PaddleMobileCPU.mm 9.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

3 4 5
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
L
liuruilong 已提交
6

7
 http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

9 10 11 12 13 14
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

15
#import "PaddleMobileCPU.h"
H
hjchen2 已提交
16 17
#import "framework/load_ops.h"
#import "framework/tensor.h"
18 19 20 21
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
@interface PaddleMobileCPUResult()

-(void)toSetOutput:(float *)output;

-(void)toSetOutputSize:(int)outputSize;

@end

@implementation PaddleMobileCPUResult

-(void)releaseOutput {
  delete [] _output;
  _output = nil;
  _outputSize = 0;
}

-(void)toSetOutput:(float *)output {
  _output = output;
}

-(void)toSetOutputSize:(int)outputSize {
  _outputSize = outputSize;
}

@end

L
liuruilong 已提交
48 49 50 51 52 53 54 55 56 57 58
@implementation  PaddleMobileCPUConfig

-(instancetype)init {
  if (self = [super init]) {
    self.threadNum = 1;
    self.optimize = YES;
  }
  return self;
}

@end
59 60

@interface  PaddleMobileCPU()
61 62 63 64
{
  paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32> *pam_;
  BOOL loaded_;
}
L
liuruilong 已提交
65 66 67

@property (strong, nonatomic) PaddleMobileCPUConfig *config;

68 69
@end

70
@implementation PaddleMobileCPU
71 72 73

static std::mutex shared_mutex;

L
liuruilong 已提交
74
- (instancetype)initWithConfig:(PaddleMobileCPUConfig *)config {
75 76
  if (self = [super init]) {
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32>();
L
liuruilong 已提交
77 78 79 80 81 82 83 84
    _config = config;
  }
  return self;
}

-(instancetype)init {
  if (self = [super init]) {
    _config = [[PaddleMobileCPUConfig alloc] init];
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  }
  return self;
}

- (void)dealloc {
  if (pam_) {
    delete pam_;
  }
}

+ (instancetype)sharedInstance{
  static dispatch_once_t onceToken;
  static id sharedManager = nil;
  dispatch_once(&onceToken, ^{
    sharedManager = [[[self class] alloc] init];
  });
  return sharedManager;
}

L
liuruilong 已提交
104
- (BOOL)loadModel:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath {
105 106
  std::string model_path_str = std::string([modelPath UTF8String]);
  std::string weights_path_str = std::string([weighsPath UTF8String]);
L
liuruilong 已提交
107 108
  pam_->SetThreadNum(self.config.threadNum);
  if (loaded_ = pam_->Load(model_path_str, weights_path_str, self.config.optimize, false, 1, self.config.loddable)) {
109 110 111 112 113 114
    return YES;
  } else {
    return NO;
  }
}

115 116 117 118
- (BOOL)LoadCombinedMemory:(size_t)modelLen
               andModelBuf:(const uint8_t *)modelBuf
         andModelParamsLen:(size_t)combinedParamsLen
      andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf {
L
liuruilong 已提交
119
  pam_->SetThreadNum(self.config.threadNum);
120
  return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen,
L
liuruilong 已提交
121
          const_cast<uint8_t*>(combinedParamsBuf), self.config.optimize, false, 1, self.config.loddable);
122 123
}

L
liuruilong 已提交
124 125
- (BOOL)load:(NSString *)modelAndWeightPath{
  std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
L
liuruilong 已提交
126
  if (loaded_ = pam_->Load(model_path_str, self.config.optimize, false, 1, self.config.loddable)) {
L
liuruilong 已提交
127 128 129 130 131 132
    return YES;
  } else {
    return NO;
  }
}

133 134 135 136 137 138 139 140

-(void)preprocess:(CGImageRef)image
           output:(float *)output
            means:(NSArray<NSNumber *> *)means
        scale:(float)scale
        dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);

L
liuruilong 已提交
141 142 143 144
  if (means == nil) {
    means = @[@0, @0, @0];
  }

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int imageWidth = CGImageGetWidth(image);
  const int imageHeight = CGImageGetHeight(image);
  const int imageChannels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  int wanted_input_width = dim_vec[3];
  int wanted_input_height = dim_vec[2];
  int wanted_input_channels = dim_vec[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }

}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
  if (means == nil) {
    means = @[@0, @0, @0];
  }

  int wanted_input_width = dim[3];
  int wanted_input_height = dim[2];
  int wanted_input_channels = dim[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }
}

218 219 220 221 222 223 224 225 226 227
- (PaddleMobileCPUResult *)predictInput:(float *)input
                      dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
L
liuruilong 已提交
228 229
    return nil;
  }
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  paddle_mobile::framework::Tensor input_tensor;

  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);

  float *input_ptr = input_tensor.mutable_data<float>(dims);

  memcpy(input_ptr, input,
         numel * sizeof(float));

  std::shared_ptr<paddle_mobile::framework::Tensor> output = pam_->Predict(input_tensor);

  float *output_pointer = new float[output->numel()];

  memcpy(output_pointer, output->data<float>(),
         output->numel() * sizeof(float));

  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
  [cpuResult toSetOutputSize: output->numel()];

  return cpuResult;
}

L
liuruilong 已提交
263
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
264 265
//  printf(" predict one ");
  std::lock_guard<std::mutex> lock(shared_mutex);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
    return nil;
  }

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int image_width = CGImageGetWidth(image);
  const int image_height = CGImageGetHeight(image);
  const int image_channels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  // sample image
  float *output = (float *)malloc(numel*sizeof(float));
  [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec];
  float *dataPointer = nullptr;
  if (nullptr != output) {
    dataPointer = output;
  } else {
    return nil;
  }

  // input
304
  std::vector<float> predict_input;
305
  for (int j = 0; j < numel; ++j) {
306
    predict_input.push_back(dataPointer[j]);
307 308 309
  }

  // predict
310
  std::vector<float> cpp_result = pam_->Predict(predict_input, dim_vec);
311

L
liuruilong 已提交
312 313 314 315 316 317
  float *output_pointer = new float[cpp_result.size()];
  memcpy(output_pointer, cpp_result.data(),
         cpp_result.size() * sizeof(float));
  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
  [cpuResult toSetOutputSize: cpp_result.size()];
L
liuruilong 已提交
318

319 320 321 322
  free(output);
  CFRelease(cfData);
  cfData = NULL;

L
liuruilong 已提交
323
  return cpuResult;
324 325
}

L
liuruilong 已提交
326 327
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim {
  return [self predict:image dim:dim means:nil scale:1];
328 329 330 331 332 333 334
}

- (void)clear{
  pam_->Clear();
}

@end