relu_compute_test.cc 10.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
17
#include "lite/backends/opencl/target_wrapper.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace lite {

template <typename dtype>
void relu_compute_ref(const dtype *x_data, const DDim &x_dim, dtype *out_data) {
  for (int i = 0; i < x_dim.production(); ++i) {
    out_data[i] = x_data[i] > 0.f ? x_data[i] : 0.f;
  }
}

32 33
#if 0   // relu_buffer
TEST(opencl_relu_buffer, compute) {
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  // prepare data
  const DDim x_dim = DDim(std::vector<DDim::value_type>{3, 6, 10, 10});
  lite::Tensor x, out;
  x.Resize(x_dim);
  out.Resize(x_dim);

  auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-10, 10);
  auto *mapped_x = static_cast<float *>(
      TargetWrapperCL::Map(x_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    mapped_x[i] = dist(engine);
  }

  // set param and kernel, then run
  operators::ActivationParam param;
  param.X = &x;
  param.Out = &out;

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();
  auto kernels = KernelRegistry::Global().Create(
      "relu", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());
  auto kernel = std::move(kernels.front());
  kernel->SetParam(param);
  std::unique_ptr<KernelContext> relu_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(relu_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(relu_context));

  kernel->Launch();

  auto *wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto *out_ptr = param.Out->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto &event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  // run compute ref and check
  std::unique_ptr<float[]> out_ref(new float[x_dim.production()]);
  relu_compute_ref<float>(mapped_x, x_dim, out_ref.get());

  auto *out_data = out.mutable_data<float, cl::Buffer>();
  auto *mapped_out = static_cast<float *>(
      TargetWrapperCL::Map(out_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6);
  }
  TargetWrapperCL::Unmap(out_data, mapped_out);
  TargetWrapperCL::Unmap(x_data, mapped_x);
}
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#endif  // relu_buffer

// #define LOOP_TEST
// #define PRINT_RESULT
TEST(relu_image2d, compute) {
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> relu(img) -> "
               "layout(img2buf) "
               "-> host";

#ifdef LOOP_TEST
  for (int n = 1; n <= 100; n += 33) {
    for (auto c : {1, 3}) {
      for (int h = 12; h <= 100; h += 13) {
        for (int w = 12; w <= 100; w += 25) {
#else
  const int n = 1;
  const int c = 2;
  const int h = 3;
  const int w = 4;
#endif  // LOOP_TEST

          LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " "
                    << h << " " << w << " ========";
          // set layout kernels
          auto buf_to_img_kernels =
              KernelRegistry::Global().Create("layout",
                                              TARGET(kOpenCL),
                                              PRECISION(kAny),
                                              DATALAYOUT(kImageDefault));
          auto img_to_buf_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW));
          auto relu_img_kernels =
              KernelRegistry::Global().Create("relu",
                                              TARGET(kOpenCL),
                                              PRECISION(kFloat),
                                              DATALAYOUT(kImageDefault));
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(relu_img_kernels.empty());

          auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
          auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
          auto relu_img_kernel = std::move(relu_img_kernels.front());
          LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
          LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
          LOG(INFO) << "get 3rd kernel: " << relu_img_kernel->doc();

          // set tensors about op param
          LOG(INFO) << "set tensors about op param";
          // layout(buf->img): x -> relu_in
          // relu(img): relu_in -> relu_out
          // layout(img->buf): relu_out -> y
          lite::Tensor x, y, relu_in, relu_out, y_ref;
          operators::LayoutParam BufferToImageParam;
          operators::LayoutParam ImageToBufferParam;
          BufferToImageParam.x = &x;
          BufferToImageParam.y = &relu_in;
          ImageToBufferParam.x = &relu_out;
          ImageToBufferParam.y = &y;
          operators::ActivationParam ReluParam;
          ReluParam.X = &relu_in;
          ReluParam.Out = &relu_out;

          const DDim x_dim = DDim(std::vector<DDim::value_type>{n, c, h, w});
          x.Resize(x_dim);
          y.Resize(x_dim);
          relu_in.Resize(x_dim);
          relu_out.Resize(x_dim);
          y_ref.Resize(x_dim);
          auto relu_image2d_shape =
              paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);

          // initialize tensors
          LOG(INFO) << "initialize tensors";
          auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
          auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
              x_data, 0, sizeof(float) * x_dim.production()));
          auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
              y_data, 0, sizeof(float) * x_dim.production()));
          for (int i = 0; i < x_dim.production(); ++i) {
            mapped_x[i] = static_cast<int>(i) - x_dim.production() / 2;
            mapped_y[i] = static_cast<int>(0);
          }
          auto *relu_in_data = relu_in.mutable_data<float, cl::Image2D>(
              relu_image2d_shape["width"], relu_image2d_shape["height"]);
          auto *relu_out_data = relu_out.mutable_data<float, cl::Image2D>(
              relu_image2d_shape["width"], relu_image2d_shape["height"]);

          // set context and kernel args
          LOG(INFO) << "set context and kernel args";
          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          buf_to_img_kernel->SetParam(BufferToImageParam);
          std::unique_ptr<KernelContext> buf_to_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(buf_to_img_context->As<OpenCLContext>()));
          buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

          img_to_buf_kernel->SetParam(ImageToBufferParam);
          std::unique_ptr<KernelContext> img_to_buf_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(img_to_buf_context->As<OpenCLContext>()));
          img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

          relu_img_kernel->SetParam(ReluParam);
          std::unique_ptr<KernelContext> relu_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(relu_img_context->As<OpenCLContext>()));
          relu_img_kernel->SetContext(std::move(relu_img_context));

          // run kernels
          LOG(INFO) << "run kernel: buf_to_img_kernel";
          buf_to_img_kernel->Launch();
          LOG(INFO) << "run kernel: relu_img_kernel";
          relu_img_kernel->Launch();
          LOG(INFO) << "run kernel: img_to_buf_kernel";
          img_to_buf_kernel->Launch();

          // compute ref cpu
          relu_compute_ref<float>(mapped_x, x_dim, y_data_ref);
// result
#ifdef PRINT_RESULT
          LOG(INFO) << "---- print kernel result (input -> output) ----";
          for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
            std::cout << mapped_x[eidx] << " -> " << mapped_y[eidx]
                      << std::endl;
          }
#endif  // PRINT_RESULT

          // check result: compare kernel output and cpu output(y_data_ref)
          for (int eidx = 0; eidx < x_dim.production(); eidx++) {
            EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-6);
            if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-6) {
              LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx
                        << " / " << x_dim.production() << ", y_data_ref["
                        << eidx << "]:" << y_data_ref[eidx] << ", mapped_y["
                        << eidx << "]:" << mapped_y[eidx];
              break;
            }
          }

          // free
          LOG(INFO) << "free: unmap x, y";
          TargetWrapperCL::Unmap(x_data, mapped_x);
          TargetWrapperCL::Unmap(y_data, mapped_y);
#ifdef LOOP_TEST
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}
Y
Yan Chunwei 已提交
249 250 251 252

}  // namespace lite
}  // namespace paddle

253 254 255 256 257 258 259
// relu buffer
// USE_LITE_KERNEL(relu, kOpenCL, kFloat, kNCHW, def);

// relu image2d
USE_LITE_KERNEL(layout, kOpenCL, kAny, kImageDefault, NCHW_to_ImageDefault);
USE_LITE_KERNEL(layout, kOpenCL, kAny, kNCHW, ImageDefault_to_NCHW);
USE_LITE_KERNEL(relu, kOpenCL, kFloat, kImageDefault, ImageDefault);