relu_compute_test.cc 3.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/opencl/target_wrapper.h"

namespace paddle {
namespace lite {

template <typename dtype>
void relu_compute_ref(const dtype *x_data, const DDim &x_dim, dtype *out_data) {
  for (int i = 0; i < x_dim.production(); ++i) {
    out_data[i] = x_data[i] > 0.f ? x_data[i] : 0.f;
  }
}

TEST(opencl_relu, compute) {
  // prepare data
  const DDim x_dim = DDim(std::vector<DDim::value_type>{3, 6, 10, 10});
  lite::Tensor x, out;
  x.Resize(x_dim);
  out.Resize(x_dim);

  auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-10, 10);
  auto *mapped_x = static_cast<float *>(
      TargetWrapperCL::Map(x_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    mapped_x[i] = dist(engine);
  }

  // set param and kernel, then run
  operators::ActivationParam param;
  param.X = &x;
  param.Out = &out;

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();
  auto kernels = KernelRegistry::Global().Create(
      "relu", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());
  auto kernel = std::move(kernels.front());
  kernel->SetParam(param);
  std::unique_ptr<KernelContext> relu_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(relu_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(relu_context));

  kernel->Launch();

  auto *wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto *out_ptr = param.Out->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto &event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  // run compute ref and check
  std::unique_ptr<float[]> out_ref(new float[x_dim.production()]);
  relu_compute_ref<float>(mapped_x, x_dim, out_ref.get());

  auto *out_data = out.mutable_data<float, cl::Buffer>();
  auto *mapped_out = static_cast<float *>(
      TargetWrapperCL::Map(out_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6);
  }
  TargetWrapperCL::Unmap(out_data, mapped_out);
  TargetWrapperCL::Unmap(x_data, mapped_x);
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(relu, kOpenCL, kFloat, kNCHW, def);