relu_compute_test.cc 3.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
17
#include "lite/backends/opencl/target_wrapper.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

template <typename dtype>
void relu_compute_ref(const dtype *x_data, const DDim &x_dim, dtype *out_data) {
  for (int i = 0; i < x_dim.production(); ++i) {
    out_data[i] = x_data[i] > 0.f ? x_data[i] : 0.f;
  }
}

TEST(opencl_relu, compute) {
  // prepare data
  const DDim x_dim = DDim(std::vector<DDim::value_type>{3, 6, 10, 10});
  lite::Tensor x, out;
  x.Resize(x_dim);
  out.Resize(x_dim);

  auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-10, 10);
  auto *mapped_x = static_cast<float *>(
      TargetWrapperCL::Map(x_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    mapped_x[i] = dist(engine);
  }

  // set param and kernel, then run
  operators::ActivationParam param;
  param.X = &x;
  param.Out = &out;

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();
  auto kernels = KernelRegistry::Global().Create(
      "relu", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());
  auto kernel = std::move(kernels.front());
  kernel->SetParam(param);
  std::unique_ptr<KernelContext> relu_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(relu_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(relu_context));

  kernel->Launch();

  auto *wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto *out_ptr = param.Out->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto &event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  // run compute ref and check
  std::unique_ptr<float[]> out_ref(new float[x_dim.production()]);
  relu_compute_ref<float>(mapped_x, x_dim, out_ref.get());

  auto *out_data = out.mutable_data<float, cl::Buffer>();
  auto *mapped_out = static_cast<float *>(
      TargetWrapperCL::Map(out_data, 0, sizeof(float) * x_dim.production()));
  for (int i = 0; i < x_dim.production(); i++) {
    EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6);
  }
  TargetWrapperCL::Unmap(out_data, mapped_out);
  TargetWrapperCL::Unmap(x_data, mapped_x);
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(relu, kOpenCL, kFloat, kNCHW, def);