cxx_api_impl.cc 5.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
22 23 24 25 26

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif

27
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
28
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
29 30 31
#include <omp.h>
#include "lite/backends/x86/mklml.h"
#endif
Y
Yan Chunwei 已提交
32 33 34 35
namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
36
  config_ = config;
37
  auto places = config.valid_places();
38
  std::vector<std::string> passes{};
39
#ifdef LITE_WITH_CUDA
40 41 42 43 44
  // if kCUDA is included in valid places, it should be initialized first,
  // otherwise skip this step.
  for (auto &p : places) {
    if (p.target == TARGET(kCUDA)) {
      Env<TARGET(kCUDA)>::Init();
45 46 47 48
      if (config_.multi_stream()) {
        passes = {"multi_stream_analysis_pass"};
        VLOG(3) << "add pass: " << passes[0];
      }
49
      break;
D
DannyIsFunny 已提交
50
    }
51
  }
52
#endif
53 54 55 56 57 58 59 60 61
#ifdef LITE_WITH_MLU
  Env<TARGET(kMLU)>::Init();
  lite::DeviceInfo::Global().SetMLURunMode(config.mlu_core_version(),
                                           config.mlu_core_number(),
                                           config.mlu_use_first_conv(),
                                           config.mlu_first_conv_mean(),
                                           config.mlu_first_conv_std(),
                                           config.mlu_input_layout());
#endif  // LITE_WITH_MLU
62 63
  auto use_layout_preprocess_pass =
      config.model_dir().find("OPENCL_PRE_PRECESS");
64 65 66
  VLOG(1) << "use_layout_preprocess_pass:" << use_layout_preprocess_pass;
  if (places[0].target == TARGET(kOpenCL) &&
      use_layout_preprocess_pass != std::string::npos) {
67
    passes = {"type_layout_cast_preprocess_pass"};
68
    VLOG(1) << "add pass:" << passes[0];
69
  }
T
TianXiaogang 已提交
70 71
  mode_ = config.power_mode();
  threads_ = config.threads();
72 73
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL)
D
DannyIsFunny 已提交
74 75 76 77 78
  //  set_thread_by input is disabled here, because this inference is proved
  //  unstable
  //  int num_threads = config.x86_math_library_num_threads();
  //  int real_num_threads = num_threads > 1 ? num_threads : 1;
  int real_num_threads = 1;
79 80
  paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads);
  omp_set_num_threads(real_num_threads);
81
  VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the "
82
             "number of threads is:"
J
jiweibo 已提交
83
          << real_num_threads;
84
#endif
Y
Yan Chunwei 已提交
85 86 87
}

std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
D
DannyIsFunny 已提交
88
  auto *x = raw_predictor_->GetInput(i);
Y
Yan Chunwei 已提交
89 90 91 92 93
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
D
DannyIsFunny 已提交
94
  const auto *x = raw_predictor_->GetOutput(i);
Y
Yan Chunwei 已提交
95 96 97
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

S
sangoly 已提交
98
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
D
DannyIsFunny 已提交
99
  return raw_predictor_->GetInputNames();
100 101
}

D
DannyIsFunny 已提交
102
std::vector<std::string> CxxPaddleApiImpl::GetParamNames() {
D
DannyIsFunny 已提交
103
  return raw_predictor_->GetParamNames();
D
DannyIsFunny 已提交
104 105
}

S
sangoly 已提交
106
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
D
DannyIsFunny 已提交
107
  return raw_predictor_->GetOutputNames();
108 109
}

T
TianXiaogang 已提交
110 111 112 113
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
D
DannyIsFunny 已提交
114
  raw_predictor_->Run();
T
TianXiaogang 已提交
115
}
Y
Yan Chunwei 已提交
116

117 118
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
D
DannyIsFunny 已提交
119 120 121
  auto predictor =
      std::make_shared<lite::CxxPaddleApiImpl>(raw_predictor_->Clone());
  status_is_cloned_ = true;
122 123 124 125
  predictor->Init(config_);
  return predictor;
}

126 127
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
128 129
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
D
DannyIsFunny 已提交
130
  auto *x = raw_predictor_->GetTensor(name);
Y
Yan Chunwei 已提交
131 132 133
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

D
DannyIsFunny 已提交
134 135 136
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetMutableTensor(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
D
DannyIsFunny 已提交
137
      new lite_api::Tensor(raw_predictor_->GetMutableTensor(name)));
D
DannyIsFunny 已提交
138 139
}

140 141 142
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
D
DannyIsFunny 已提交
143
      new lite_api::Tensor(raw_predictor_->GetInputByName(name)));
144 145
}

Y
Yan Chunwei 已提交
146
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
147 148
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
D
DannyIsFunny 已提交
149
  raw_predictor_->SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
}

}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle