instance_norm_image_compute.cc 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class InstanceNormImageCompute : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InstanceNormParam;

  std::string doc() const override {
    return "InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#if 1  // onnx/pytorch version
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto out = instance_norm_param_->out;
    auto out_dims = out->dims();
    const int out_n = out_dims[0];
    const int out_c = out_dims[1];
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];
    const int c_group = (out_dims[1] + 3) / 4;

    // TODO(ysh329): add instance_norm + relu pass
    // std::string build_options_ += "-DRELU";
    if (out_h == 128) {
      build_options_ += " -DLOCAL_MEM_128";
    } else if (out_h == 64) {
      build_options_ += " -DLOCAL_MEM_64";
    } else if (out_h > 256) {
      LOG(FATAL) << "Unsupported input height:" << out_h << " of instance norm";
    }

    auto& context = ctx_->As<OpenCLContext>();
63 64 65 66
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto x_dims = x->dims();
    auto out_dims = out->dims();

    const int out_n = out_dims[0];
    const int out_c_group = (out_dims[1] + 3) / 4;
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];

    float epsilon = instance_norm_param_->epsilon;
    auto device_info = CLRuntime::Global()->GetDeviceInfo();
    int max_work_item_size1 = device_info["CL_DEVICE_MAX_WORK_ITEM_SIZES_1"];
    int lws0 = 1;
    int lws1 =
        std::min(static_cast<int>(max_work_item_size1), std::min(256, out_w));
    int lws2 = 1;
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(out_n * out_c_group),
                    static_cast<cl::size_type>(lws1),
                    static_cast<cl::size_type>(lws2)};
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(lws0),
                                       static_cast<cl::size_type>(lws1),
                                       static_cast<cl::size_type>(lws2)};

#ifndef LITE_SHUTDOWN_LOG
    VLOG(4) << "global_work_size:" << static_cast<int>(global_work_size[0])
            << " " << static_cast<int>(global_work_size[1]) << " "
            << static_cast<int>(global_work_size[2]);
    VLOG(4) << "local_work_size:" << static_cast<int>(local_work_size[0]) << " "
            << static_cast<int>(local_work_size[1]) << " "
            << static_cast<int>(local_work_size[2]);
    VLOG(4) << "out_w:" << out_w;
    VLOG(4) << "out_h:" << out_h;
    VLOG(4) << "out_c_group:" << out_c_group;
    VLOG(4) << "lws1:" << lws1;
    VLOG(4) << "lws2:" << lws2;
    VLOG(4) << "epsilon:" << epsilon;
#endif

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    STL::stringstream kernel_key;
120
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
121 122
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

123
    cl_int status = kernel->setArg(0, out_w);
124
    CL_CHECK_FATAL(status);
125
    status = kernel->setArg(1, out_h);
126
    CL_CHECK_FATAL(status);
127
    status = kernel->setArg(2, out_c_group);
128
    CL_CHECK_FATAL(status);
129
    status = kernel->setArg(3, lws1);
130
    CL_CHECK_FATAL(status);
131
    status = kernel->setArg(4, lws2);
132
    CL_CHECK_FATAL(status);
133
    status = kernel->setArg(5, epsilon);
134
    CL_CHECK_FATAL(status);
135
    status = kernel->setArg(6, *x_img);
136
    CL_CHECK_FATAL(status);
137
    status = kernel->setArg(7, *out_img);
138 139 140
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
141
        *kernel.get(),
142 143 144 145 146 147 148 149 150 151
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

#else  // paddle version
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto channel = instance_norm_param_->scale->dims()[0];
    auto batch = instance_norm_param_->x->dims()[0];
    int64_t cgroup = (channel + 3) / 4;
    int64_t cround = cgroup * 4;
    std::vector<half_t> scale_img(cround * batch);
    std::vector<half_t> bias_img(cround * batch);
    const float* scale_data = instance_norm_param_->scale->data<float>();
    const float* bias_data = instance_norm_param_->bias->data<float>();
    //! init scale_img bias_img data
    for (int i = 0; i < channel; ++i) {
      scale_img[i] = Float2Half(scale_data[i]);
      bias_img[i] = Float2Half(bias_data[i]);
    }
    for (int i = channel; i < cround; ++i) {
      scale_img[i] = Float2Half(0.f);
      bias_img[i] = Float2Half(0.f);
    }
    for (int i = 1; i < batch; ++i) {
      memcpy(scale_img.data() + i * cround,
             scale_img.data(),
             cround * sizeof(half_t));
      memcpy(bias_img.data() + i * cround,
             bias_img.data(),
             cround * sizeof(half_t));
    }
    DDim scale_img_size{{cgroup, batch}};
    scale_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], scale_img.data());
    bias_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], bias_img.data());
    auto& context = ctx_->As<OpenCLContext>();
185 186 187 188
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto in_dims = x->dims();

    int batch = in_dims[0];
    int channel = in_dims[1];
    int in_h = in_dims[2];
    int in_w = in_dims[3];

204
#ifndef LITE_SHUTDOWN_LOG
205 206 207
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
208
#endif
209 210 211 212 213

    auto out_image_shape = InitImageDimInfoWith(in_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
214 215

#ifndef LITE_SHUTDOWN_LOG
216 217 218 219
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
220
#endif
221 222 223 224 225 226 227 228 229 230 231

    int threads = 512;
    int group_size_x = (channel + 3) / 4;
    int group_size_y = batch;
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(threads),
                                       static_cast<cl::size_type>(1),
                                       static_cast<cl::size_type>(1)};
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(group_size_x * threads),
                    static_cast<cl::size_type>(group_size_y),
                    static_cast<cl::size_type>(1)};
232 233

#ifndef LITE_SHUTDOWN_LOG
234 235 236 237
    VLOG(4) << "local_work_size:[2D]:" << local_work_size[0] << " "
            << local_work_size[1] << " " << local_work_size[2];
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
238
#endif
239 240

    STL::stringstream kernel_key;
241
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
242 243 244 245 246
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    auto* scale_img = scale_image_.data<half_t, cl::Image2D>();
    auto* bias_img = bias_image_.data<half_t, cl::Image2D>();
    float epsilon = instance_norm_param_->epsilon;

247
    cl_int status = kernel->setArg(arg_idx++, *x_img);
248
    CL_CHECK_FATAL(status);
249
    status = kernel->setArg(arg_idx++, *out_img);
250
    CL_CHECK_FATAL(status);
251
    status = kernel->setArg(arg_idx++, *scale_img);
252
    CL_CHECK_FATAL(status);
253
    status = kernel->setArg(arg_idx++, *bias_img);
254
    CL_CHECK_FATAL(status);
255
    status = kernel->setArg(arg_idx++, epsilon);
256
    CL_CHECK_FATAL(status);
257
    status = kernel->setArg(arg_idx++, in_h);
258
    CL_CHECK_FATAL(status);
259
    status = kernel->setArg(arg_idx++, in_w);
260 261 262
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
263
        *kernel.get(),
264 265 266 267 268 269 270 271
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }
272
#endif
273 274 275

 protected:
  param_t* instance_norm_param_{nullptr};
276
  std::string kernel_func_name_{"instance_norm_onnx"};
277
  std::string build_options_{"-DCL_DTYPE_half"};
278
  std::string time_stamp_{GetTimeStamp()};
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  std::shared_ptr<cl::Event> event_{new cl::Event};
  Tensor scale_image_;
  Tensor bias_image_;
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(instance_norm,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::InstanceNormImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Y",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();