depthwise_conv3x3.cpp 82.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hjchen2 已提交
14 15 16

#include "operators/math/depthwise_conv3x3.h"
#include <vector>
17
#if __ARM_NEON
E
eclipsess 已提交
18
#include <arm_neon.h>
L
liuruilong 已提交
19
#endif
W
wangliu 已提交
20 21 22 23

namespace paddle_mobile {
namespace operators {
namespace math {
H
hjchen2 已提交
24 25 26 27 28 29

void DepthwiseConv3x3(const framework::Tensor *input,
                      const std::vector<int> &strides,
                      const std::vector<int> &paddings,
                      const framework::Tensor *filter, framework::Tensor *bias,
                      framework::Tensor *output, bool if_bias) {
W
wangliu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  if (if_bias) {
    math::expand_bias(*bias, 1, output->dims());
    output->ShareDataWith(*bias);
  }
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
74 75 76 77 78 79
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
W
wangliu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            if (if_bias) {
              output_data[ph * output_width + pw] += result;
            } else {
              output_data[ph * output_width + pw] = result;
            }

          } else {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#if __ARM_NEON
#if __aarch64__
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            if (if_bias) {
              output_data[ph * output_width + pw] += vget_lane_f32(res, 0);
            } else {
              output_data[ph * output_width + pw] = vget_lane_f32(res, 0);
            }
#else
W
wangliu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            asm volatile(

                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q4}, [%[filter1]]        \n\t"
                "vmov.f32 q0,    #0.0              \n\t"

                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q5}, [%[filter2]]        \n\t"
                "vmla.f32 q0, q1, q4           \n\t"

                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vld1.32  {q6}, [%[filter3]]        \n\t"

                "vmla.f32 q0, q2, q5           \n\t"
                "vmla.f32 q0, q3, q6          \n\t"

                "vmov.f32 d1[1],  %[zero]         \n\t"

                "vadd.f32  d4, d0, d1           \n\t"
                "vadd.f32  s10, s8, s9            \n\t"
                "vst1.32 {d5[0]},[%[output_ptr]]    \n\t"
                :
                : [input_data] "r"(input_data), [pos1] "r"(pos1),
                  [pos2] "r"(pos2), [pos3] "r"(pos3), [filter1] "r"(filter1),
                  [filter2] "r"(filter2), [filter3] "r"(filter3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero)
                : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6");
235
#endif  // __aarch64__
W
wangliu 已提交
236 237
#else

238
#endif  // __ARM_NEON
W
wangliu 已提交
239 240 241 242 243 244 245 246 247 248 249 250
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}

H
hjchen2 已提交
251 252 253
void DepthwiseConv3x3s1p1(const framework::Tensor *input,
                          const framework::Tensor *filter,
                          framework::Tensor *output, framework::Tensor *bias,
254
                          bool if_bias, bool if_relu) {
255
#if __ARM_NEON
W
wangliu 已提交
256 257
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
258 259
  const int h = static_cast<int>(input->dims()[2]);
  const int w = static_cast<int>(input->dims()[3]);
W
wangliu 已提交
260
  const int hxw = h * w;
261
  // const int l = h;
262 263

  // leftTop, rightTop, leftBottom, rightBottom
264 265 266 267
  const int lt = 0;
  const int rt = w - 1;
  const int lb = (h - 1) * w;
  const int rb = h * w - 1;
268

269 270 271 272 273
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }

274 275
  float32x4_t zero = vdupq_n_f32(0.0);

W
wangliu 已提交
276
  for (int b = 0; b < batch_size; ++b) {
277
#pragma omp parallel for
W
wangliu 已提交
278
    for (int j = 0; j < c; ++j) {
279 280 281 282
      const float *filter_data_tmp = filter->data<float>() + j * 9;
      const float *input_data = input->data<float>() + j * hxw;
      float *output_data = output->mutable_data<float>() + j * hxw;
      float32x4_t vbias;
W
wangliu 已提交
283 284 285 286
      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

E
eclipsess 已提交
287
      int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
W
wangliu 已提交
288 289 290 291 292 293 294 295 296 297
      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

298 299 300 301 302 303
      output_data[lt] = w11 * input_data[0] + w12 * input_data[1] +
                        w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[rt] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                        w20 * input_data[2 * w - 2] +
                        w21 * input_data[2 * w - 1];
      output_data[lb] =
E
eclipsess 已提交
304 305
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
306
      output_data[rb] =
E
eclipsess 已提交
307 308
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
E
eclipsess 已提交
309
      if (if_bias) {
310 311 312 313 314 315 316 317 318 319
        output_data[lt] += bias_data[j];
        output_data[rt] += bias_data[j];
        output_data[lb] += bias_data[j];
        output_data[rb] += bias_data[j];
      }
      if (if_relu) {
        output_data[lt] = output_data[lt] < 0 ? 0 : output_data[lt];
        output_data[rt] = output_data[rt] < 0 ? 0 : output_data[rt];
        output_data[lb] = output_data[lb] < 0 ? 0 : output_data[lb];
        output_data[rb] = output_data[rb] < 0 ? 0 : output_data[rb];
E
eclipsess 已提交
320
      }
W
wangliu 已提交
321

E
eclipsess 已提交
322
      for (int i = 1; i < h - 1; ++i) {
323 324 325
        int left = i * w;
        int right = i * w + w - 1;
        output_data[left] =
E
eclipsess 已提交
326
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
E
eclipsess 已提交
327
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
E
eclipsess 已提交
328 329
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

330 331 332 333 334 335
        output_data[right] = w00 * input_data[i * w + w - 1 - w - 1] +
                             w01 * input_data[i * w + w - 1 - w] +
                             w10 * input_data[i * w + w - 1 - 1] +
                             w11 * input_data[i * w + w - 1] +
                             w20 * input_data[i * w + w - 1 + w - 1] +
                             w21 * input_data[i * w + w - 1 + w];
E
eclipsess 已提交
336
        if (if_bias) {
337 338 339 340 341 342
          output_data[left] += bias_data[j];
          output_data[right] += bias_data[j];
        }
        if (if_relu) {
          output_data[left] = output_data[left] < 0 ? 0 : output_data[left];
          output_data[right] = output_data[right] < 0 ? 0 : output_data[right];
E
eclipsess 已提交
343
        }
W
wangliu 已提交
344 345 346 347 348 349 350 351
      }

      // top 1 row and bottom 1 row
      const float *input_tmp = input_data;

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, out0;
      in0 = vld1q_f32(input_tmp);
E
eclipsess 已提交
352 353
      in2 = vld1q_f32(input_tmp + w);
      const float *input_tmp_end = input_tmp + (h - 2) * w;
W
wangliu 已提交
354
      in4 = vld1q_f32(input_tmp_end);
E
eclipsess 已提交
355 356
      in6 = vld1q_f32(input_tmp_end + w);
      int c_mid = w_mid;
W
wangliu 已提交
357 358 359
      auto output_ptr = output_data + 1;
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
360
        in3 = vld1q_f32(input_tmp + w + 4);
W
wangliu 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vaddq_f32(out0, vbias);
375 376 377
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
W
wangliu 已提交
378 379 380
        vst1q_f32(output_ptr, out0);

        in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
381
        in7 = vld1q_f32(input_tmp_end + w + 4);
W
wangliu 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        out0 = vmulq_n_f32(in4, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in6, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vaddq_f32(out0, vbias);
395 396 397
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
E
eclipsess 已提交
398
        vst1q_f32(output_ptr + (h - 1) * w, out0);
W
wangliu 已提交
399 400 401 402 403 404 405 406 407 408 409 410

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }

      // top right pad
E
eclipsess 已提交
411 412
      float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
W
wangliu 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      out0 = vmulq_n_f32(in0, w10);
      out0 = vmlaq_n_f32(out0, tmp0, w11);
      out0 = vmlaq_n_f32(out0, tmp1, w12);
      out0 = vmlaq_n_f32(out0, in2, w20);
      out0 = vmlaq_n_f32(out0, tmp2, w21);
      out0 = vmlaq_n_f32(out0, tmp3, w22);
      out0 = vaddq_f32(out0, vbias);
426 427 428
      if (if_relu) {
        out0 = vmaxq_f32(out0, zero);
      }
W
wangliu 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom right pad
E
eclipsess 已提交
443 444
      float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
      float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
W
wangliu 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      out0 = vmulq_n_f32(in4, w00);
      out0 = vmlaq_n_f32(out0, tmp0, w01);
      out0 = vmlaq_n_f32(out0, tmp1, w02);
      out0 = vmlaq_n_f32(out0, in6, w10);
      out0 = vmlaq_n_f32(out0, tmp2, w11);
      out0 = vmlaq_n_f32(out0, tmp3, w12);
      out0 = vaddq_f32(out0, vbias);
458 459 460
      if (if_relu) {
        out0 = vmaxq_f32(out0, zero);
      }
W
wangliu 已提交
461 462 463

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
E
eclipsess 已提交
464
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
W
wangliu 已提交
465 466
        }
        if (i == 1) {
E
eclipsess 已提交
467
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
W
wangliu 已提交
468 469
        }
        if (i == 2) {
E
eclipsess 已提交
470
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
W
wangliu 已提交
471 472 473 474
        }
      }
      // mid

E
eclipsess 已提交
475 476 477
      for (int i = 0; i < h - 2; ++i) {
        auto output_ptr = output_data + (i + 1) * w + 1;
        input_tmp = input_data + i * w;
W
wangliu 已提交
478
        auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
479 480 481
        auto in2_tmp = vld1q_f32(input_tmp + w);
        auto in4_tmp = vld1q_f32(input_tmp + w + w);
        c_mid = w_mid;
W
wangliu 已提交
482 483
        for (; c_mid > 3; c_mid -= 4) {
          auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
484 485
          auto in3_tmp = vld1q_f32(input_tmp + w + 4);
          auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
W
wangliu 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

          tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
          tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
          tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
          tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
          tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
          tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

          out0 = vmulq_n_f32(in0_tmp, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2_tmp, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4_tmp, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
          out0 = vaddq_f32(out0, vbias);
504 505 506
          if (if_relu) {
            out0 = vmaxq_f32(out0, zero);
          }
W
wangliu 已提交
507 508 509 510 511 512 513 514 515 516

          vst1q_f32(output_ptr, out0);

          output_ptr += 4;
          input_tmp += 4;
          in0_tmp = in1_tmp;
          in2_tmp = in3_tmp;
          in4_tmp = in5_tmp;
        }

E
eclipsess 已提交
517 518 519
        float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
        float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
W
wangliu 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

        tmp0 = vextq_f32(in0_tmp, pad0, 1);
        tmp1 = vextq_f32(in0_tmp, pad0, 2);
        tmp2 = vextq_f32(in2_tmp, pad1, 1);
        tmp3 = vextq_f32(in2_tmp, pad1, 2);
        tmp4 = vextq_f32(in4_tmp, pad2, 1);
        tmp5 = vextq_f32(in4_tmp, pad2, 2);

        out0 = vmulq_n_f32(in0_tmp, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in2_tmp, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_n_f32(out0, in4_tmp, w20);
        out0 = vmlaq_n_f32(out0, tmp4, w21);
        out0 = vmlaq_n_f32(out0, tmp5, w22);
        out0 = vaddq_f32(out0, vbias);
538 539 540
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
W
wangliu 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
    }
  }
L
liuruilong 已提交
556
#endif
W
wangliu 已提交
557
}
E
eclipsess 已提交
558

H
hjchen2 已提交
559 560 561 562 563 564
void DepthwiseConvAddBNRelu3x3s1p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
565
#if __ARM_NEON
E
eclipsess 已提交
566
  const float *input_data = input->data<float>();
E
eclipsess 已提交
567
  const float *filter_data = filter->data<float>();
E
eclipsess 已提交
568 569 570 571 572
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int batch_size = static_cast<int>(input->dims()[0]);
573 574 575 576 577 578 579 580 581
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);

  const int hxw = input_height * input_width;

E
eclipsess 已提交
582 583 584
  //  const int l = input_height;
  const int h = input_height;
  const int w = input_width;
E
eclipsess 已提交
585 586
  float32x4_t vzero = vdupq_n_f32(0);

587
  for (int b = 0; b < batch_size; b++) {
588
#pragma omp parallel for
589
    for (int c = 0; c < input_channel; c++) {
590 591 592 593 594
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * hxw;
      float *output_data = output->data<float>() + c * hxw;
      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
595 596 597 598 599 600 601 602 603 604

      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
E
eclipsess 已提交
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
      for (int i = 1; i < output_height - 1; i++) {
        float *output_ptr;
        float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3, tmp4,
            tmp5, out0;
        for (int m = 1; m < output_width - 4; m += 4) {
          output_ptr = output_data + i * output_width + m;
          in0 = vld1q_f32(input_data + (i - 1) * input_width + m - 1);
          in1 = vld1q_f32(input_data + (i - 1) * input_width + m + 3);
          in2 = vld1q_f32(input_data + i * input_width + m - 1);
          in3 = vld1q_f32(input_data + i * input_width + m + 3);
          in4 = vld1q_f32(input_data + (i + 1) * input_width + m - 1);
          in5 = vld1q_f32(input_data + (i + 1) * input_width + m + 3);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);

          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
          if (if_relu) {
            out0 = vmaxq_f32(out0, vzero);
          }
          vst1q_f32(output_ptr, out0);
        }
        int m;
        for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
        }

        for (int j = m; j < output_width - 1; j++) {
          output_data[i * output_width + j] =
              input_data[(i - 1) * input_width + j - 1] * w00 +
              input_data[(i - 1) * input_width + j] * w01 +
              input_data[(i - 1) * input_width + j + 1] * w02 +
              input_data[(i)*input_width + j - 1] * w10 +
              input_data[(i)*input_width + j] * w11 +
              input_data[(i)*input_width + j + 1] * w12 +
              input_data[(i + 1) * input_width + j - 1] * w20 +
              input_data[(i + 1) * input_width + j] * w21 +
              input_data[(i + 1) * input_width + j + 1] * w22;
          output_data[i * output_width + j] =
              newscale_data[c] * output_data[i * output_width + j] +
              newbias_data[c];
          if (if_relu) {
            output_data[i * output_width + j] =
                output_data[i * output_width + j] < 0
                    ? 0
                    : output_data[i * output_width + j];
          }
        }
      }

E
eclipsess 已提交
669
      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
670 671 672 673 674 675 676 677 678 679
                       w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                           w20 * input_data[2 * w - 2] +
                           w21 * input_data[2 * w - 1];
      output_data[(h - 1) * w] =
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
      output_data[h * w - 1] =
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
680
      output_data[0] = output_data[0] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
681 682 683 684 685 686
      output_data[w - 1] =
          output_data[w - 1] * newscale_data[c] + newbias_data[c];
      output_data[(h - 1) * w] =
          output_data[(h - 1) * w] * newscale_data[c] + newbias_data[c];
      output_data[h * w - 1] =
          output_data[h * w - 1] * newscale_data[c] + newbias_data[c];
687

E
eclipsess 已提交
688 689
      if (if_relu) {
        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
690 691 692 693 694
        output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w - 1];
        output_data[(h - 1) * w] =
            output_data[(h - 1) * w] < 0 ? 0 : output_data[(h - 1) * w];
        output_data[h * w - 1] =
            output_data[h * w - 1] < 0 ? 0 : output_data[h * w - 1];
E
eclipsess 已提交
695
      }
E
eclipsess 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
      for (int i = 1; i < h - 1; ++i) {
        output_data[i * w] =
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

        output_data[i * w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] +
                                     w01 * input_data[i * w + w - 1 - w] +
                                     w10 * input_data[i * w + w - 1 - 1] +
                                     w11 * input_data[i * w + w - 1] +
                                     w20 * input_data[i * w + w - 1 + w - 1] +
                                     w21 * input_data[i * w + w - 1 + w];
        output_data[i * w] =
            output_data[i * w] * newscale_data[c] + newbias_data[c];
        output_data[i * w + w - 1] =
            output_data[i * w + w - 1] * newscale_data[c] + newbias_data[c];
712

E
eclipsess 已提交
713
        if (if_relu) {
E
eclipsess 已提交
714 715 716
          output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i * w];
          output_data[i * w + w - 1] =
              output_data[i * w + w - 1] < 0 ? 0 : output_data[i * w + w - 1];
E
eclipsess 已提交
717 718 719
        }
      }

720 721 722 723 724 725 726 727
      int m;
      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr = output_data + m;
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + m - 1);
        in1 = vld1q_f32(input_data + m + 3);
        in2 = vld1q_f32(input_data + input_width + m - 1);
        in3 = vld1q_f32(input_data + input_width + m + 3);
E
eclipsess 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
        vst1q_f32(output_ptr, out0);
743
      }
744 745

      for (m = 1; (m + 3) < output_width - 1; m += 4) {
746 747 748 749 750 751 752 753
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[j] = input_data[j - 1] * w10 + input_data[j] * w11 +
                         input_data[j + 1] * w12 +
                         input_data[input_width + j - 1] * w20 +
                         input_data[input_width + j] * w21 +
                         input_data[input_width + j + 1] * w22;
        output_data[j] = output_data[j] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
754

755 756 757 758
        if (if_relu) {
          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
        }
      }
E
eclipsess 已提交
759

760
      for (m = 1; m < output_width - 4; m += 4) {
761 762
        float *output_ptr =
            output_data + (output_height - 1) * output_width + m;
E
eclipsess 已提交
763

764 765 766 767 768 769 770 771 772 773
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + (output_height - 2) * input_width + m - 1);
        in1 = vld1q_f32(input_data + (output_height - 2) * input_width + m + 3);
        in2 = vld1q_f32(input_data + (output_height - 1) * input_width + m - 1);
        in3 = vld1q_f32(input_data + (output_height - 1) * input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w00);
E
eclipsess 已提交
774 775
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
776
        out0 = vmlaq_n_f32(out0, in2, w10);
E
eclipsess 已提交
777 778 779 780 781 782
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
783
        vst1q_f32(output_ptr, out0);
E
eclipsess 已提交
784
      }
785 786 787 788 789 790 791 792 793 794 795 796 797 798
      for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[(output_height - 1) * input_width + j] =
            input_data[(output_height - 2) * input_width + j - 1] * w00 +
            input_data[(output_height - 2) * input_width + j] * w01 +
            input_data[(output_height - 2) * input_width + j + 1] * w02 +
            input_data[(output_height - 1) * input_width + j - 1] * w10 +
            input_data[(output_height - 1) * input_width + j] * w11 +
            input_data[(output_height - 1) * input_width + j + 1] * w12;
        output_data[(output_height - 1) * output_width + j] =
            output_data[(output_height - 1) * output_width + j] *
                newscale_data[c] +
            newbias_data[c];
E
eclipsess 已提交
799

800 801 802 803 804 805
        if (if_relu) {
          output_data[(output_height - 1) * output_width + j] =
              output_data[(output_height - 1) * output_width + j] < 0
                  ? 0
                  : output_data[(output_height - 1) * output_width + j];
        }
E
eclipsess 已提交
806
      }
807 808
    }
  }
E
eclipsess 已提交
809

810
    /*
811 812 813 814 815 816 817 818
        const float *input_data = input->data<float>();
        const float *filter_data = filter->data<float>();
        float *output_data = output->data<float>();
        const float *newscale_data = new_scale->data<float>();
        const float *newbias_data = new_bias->data<float>();

        const int h = static_cast<int>(input->dims()[2]);
        const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
819
//        const int l = h;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

        const int batch_size = static_cast<int>(input->dims()[0]);
        const int c = static_cast<int>(input->dims()[1]);
        const int hxw = h * w;
        float32x4_t vnewbias = vdupq_n_f32(0.0);
        float32x4_t vnewscale = vdupq_n_f32(1.0);
        float32x4_t vzero = vdupq_n_f32(0);

        for (int b = 0; b < batch_size; ++b) {
          const float *filter_data_tmp = filter_data;

          for (int j = 0; j < c; ++j) {
            vnewbias = vdupq_n_f32(newbias_data[j]);
            vnewscale = vdupq_n_f32(newscale_data[j]);

E
eclipsess 已提交
835
            int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
836 837 838 839 840 841 842 843 844 845 846
            float w00 = filter_data_tmp[0];
            float w01 = filter_data_tmp[1];
            float w02 = filter_data_tmp[2];
            float w10 = filter_data_tmp[3];
            float w11 = filter_data_tmp[4];
            float w12 = filter_data_tmp[5];
            float w20 = filter_data_tmp[6];
            float w21 = filter_data_tmp[7];
            float w22 = filter_data_tmp[8];

            output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
847 848 849 850 851 852 853 854 855 856 857 858
                             w21 * input_data[w] + w22 * input_data[w + 1];

            output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w -
       1] + w20 * input_data[2 * w - 2] + w21 * input_data[2 * w - 1];

            output_data[(h - 1) * w] =
                w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w +
       1] + w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
            output_data[h * w - 1] = w00 * input_data[h*w-w-2] +
                                     w01 * input_data[h*w-w-1] +
                                     w10 * input_data[h * w - 2] +
                                     w11 * input_data[h * w - 1];
859
            output_data[0] = output_data[0] * newscale_data[j] +
E
eclipsess 已提交
860 861 862 863 864
       newbias_data[j]; output_data[w - 1] = output_data[w - 1] *
       newscale_data[j] + newbias_data[j]; output_data[(h - 1) * w] =
                output_data[(h - 1) * w] * newscale_data[j] + newbias_data[j];
            output_data[h * w - 1] =
                output_data[h * w - 1] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
865

866 867
            if (if_relu) {
              output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
868 869 870 871
              output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w -
       1]; output_data[(h - 1) * w] = output_data[(h - 1) * w] < 0 ? 0 :
       output_data[(h - 1) * w]; output_data[h * w - 1] = output_data[h * w - 1]
       < 0 ? 0 : output_data[h * w - 1];
872
            }
E
eclipsess 已提交
873 874 875 876 877 878 879 880 881 882 883
            for (int i = 1; i < h - 1; ++i) {
              output_data[i * w] =
                  w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1]
       + w11 * input_data[i * w] + w12 * input_data[i * w + 1] + w21 *
       input_data[i * w + w] + w22 * input_data[i * w + w + 1]; output_data[i *
       w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] + w01 * input_data[i
       * w + w - 1 - w] + w10 * input_data[i * w + w - 1 - 1] + w11 *
       input_data[i * w + w - 1] + w20 * input_data[i * w + w - 1 + w - 1] + w21
       * input_data[i * w + w - 1 + w]; output_data[i * w] = output_data[i * w]
       * newscale_data[j] + newbias_data[j]; output_data[i * w + w - 1] =
                  output_data[i * w + w - 1] * newscale_data[j] +
884 885 886
       newbias_data[j];

              if (if_relu) {
E
eclipsess 已提交
887 888 889
                output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i
       * w]; output_data[i * w + w - 1] = output_data[i * w + w - 1] < 0 ? 0 :
       output_data[i * w + w - 1];
890 891
              }
            }
E
eclipsess 已提交
892

893 894 895 896 897
            // top 1 row and bottom 1 row
            const float *input_tmp = input_data;

            float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
       tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
E
eclipsess 已提交
898 899 900
       vld1q_f32(input_tmp + w); const float *input_tmp_end = input_tmp + (h -
       2) * w; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
       w); int c_mid = w_mid; auto output_ptr = output_data + 1; for (; c_mid >
901
       3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
E
eclipsess 已提交
902
       vld1q_f32(input_tmp + w + 4);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

              tmp0 = vextq_f32(in0, in1, 1);
              tmp1 = vextq_f32(in0, in1, 2);

              tmp2 = vextq_f32(in2, in3, 1);
              tmp3 = vextq_f32(in2, in3, 2);

              out0 = vmulq_n_f32(in0, w10);
              out0 = vmlaq_n_f32(out0, tmp0, w11);
              out0 = vmlaq_n_f32(out0, tmp1, w12);
              out0 = vmlaq_n_f32(out0, in2, w20);
              out0 = vmlaq_n_f32(out0, tmp2, w21);
              out0 = vmlaq_n_f32(out0, tmp3, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              vst1q_f32(output_ptr, out0);

              in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
923
              in7 = vld1q_f32(input_tmp_end + w + 4);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

              tmp0 = vextq_f32(in4, in5, 1);
              tmp1 = vextq_f32(in4, in5, 2);
              tmp2 = vextq_f32(in6, in7, 1);
              tmp3 = vextq_f32(in6, in7, 2);

              out0 = vmulq_n_f32(in4, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in6, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
E
eclipsess 已提交
940
              vst1q_f32(output_ptr + (h - 1) * w, out0);
941 942 943 944 945 946 947 948 949 950

              // can optimize to each 8 stride.
              input_tmp += 4;
              input_tmp_end += 4;
              output_ptr += 4;
              in0 = in1;
              in2 = in3;
              in4 = in5;
              in6 = in7;
            }
E
eclipsess 已提交
951

952
            // top right pad
E
eclipsess 已提交
953 954
            float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
            float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

            tmp0 = vextq_f32(in0, pad0, 1);
            tmp1 = vextq_f32(in0, pad0, 2);
            tmp2 = vextq_f32(in2, pad1, 1);
            tmp3 = vextq_f32(in2, pad1, 2);

            out0 = vmulq_n_f32(in0, w10);
            out0 = vmlaq_n_f32(out0, tmp0, w11);
            out0 = vmlaq_n_f32(out0, tmp1, w12);
            out0 = vmlaq_n_f32(out0, in2, w20);
            out0 = vmlaq_n_f32(out0, tmp2, w21);
            out0 = vmlaq_n_f32(out0, tmp3, w22);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
                vst1q_lane_f32(output_ptr + i, out0, 0);
              }
              if (i == 1) {
                vst1q_lane_f32(output_ptr + i, out0, 1);
              }
              if (i == 2) {
                vst1q_lane_f32(output_ptr + i, out0, 2);
              }
            }
982

983
            // bottom right pad
E
eclipsess 已提交
984 985
            float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
            float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
986

987 988 989 990
            tmp0 = vextq_f32(in4, pad2, 1);
            tmp1 = vextq_f32(in4, pad2, 2);
            tmp2 = vextq_f32(in6, pad3, 1);
            tmp3 = vextq_f32(in6, pad3, 2);
991

992
            out0 = vmulq_n_f32(in4, w00);
993 994
            out0 = vmlaq_n_f32(out0, tmp0, w01);
            out0 = vmlaq_n_f32(out0, tmp1, w02);
995
            out0 = vmlaq_n_f32(out0, in6, w10);
996 997 998 999 1000 1001
            out0 = vmlaq_n_f32(out0, tmp2, w11);
            out0 = vmlaq_n_f32(out0, tmp3, w12);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
1002 1003
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
E
eclipsess 已提交
1004
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
1005 1006
              }
              if (i == 1) {
E
eclipsess 已提交
1007
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
1008 1009
              }
              if (i == 2) {
E
eclipsess 已提交
1010
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
1011 1012 1013 1014 1015
              }
            }
            // mid


E
eclipsess 已提交
1016 1017 1018
            for (int i = 0; i < h - 2; ++i) {
              auto output_ptr = output_data + (i + 1) * w + 1;
              input_tmp = input_data + i * w;
1019
              auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
1020 1021 1022
              auto in2_tmp = vld1q_f32(input_tmp + w);
              auto in4_tmp = vld1q_f32(input_tmp + w + w);
              c_mid = w_mid;
1023 1024
              for (; c_mid > 3; c_mid -= 4) {
                auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
1025 1026
                auto in3_tmp = vld1q_f32(input_tmp + w + 4);
                auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

                tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
                tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
                tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
                tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
                tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
                tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

                out0 = vmulq_n_f32(in0_tmp, w00);
                out0 = vmlaq_n_f32(out0, tmp0, w01);
                out0 = vmlaq_n_f32(out0, tmp1, w02);
                out0 = vmlaq_n_f32(out0, in2_tmp, w10);
                out0 = vmlaq_n_f32(out0, tmp2, w11);
                out0 = vmlaq_n_f32(out0, tmp3, w12);
                out0 = vmlaq_n_f32(out0, in4_tmp, w20);
                out0 = vmlaq_n_f32(out0, tmp4, w21);
                out0 = vmlaq_n_f32(out0, tmp5, w22);
                out0 = vmlaq_f32(vnewbias, vnewscale, out0);
                if (if_relu) {
                  out0 = vmaxq_f32(out0, vzero);
                }
                vst1q_f32(output_ptr, out0);
1049

1050 1051 1052 1053 1054 1055
                output_ptr += 4;
                input_tmp += 4;
                in0_tmp = in1_tmp;
                in2_tmp = in3_tmp;
                in4_tmp = in5_tmp;
              }
1056

E
eclipsess 已提交
1057 1058 1059
              float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
              float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
              float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

              tmp0 = vextq_f32(in0_tmp, pad0, 1);
              tmp1 = vextq_f32(in0_tmp, pad0, 2);
              tmp2 = vextq_f32(in2_tmp, pad1, 1);
              tmp3 = vextq_f32(in2_tmp, pad1, 2);
              tmp4 = vextq_f32(in4_tmp, pad2, 1);
              tmp5 = vextq_f32(in4_tmp, pad2, 2);

              out0 = vmulq_n_f32(in0_tmp, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in2_tmp, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_n_f32(out0, in4_tmp, w20);
              out0 = vmlaq_n_f32(out0, tmp4, w21);
              out0 = vmlaq_n_f32(out0, tmp5, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              for (int i = 0; i < c_mid; ++i) {
                if (i == 0) {
                  vst1q_lane_f32(output_ptr + i, out0, 0);
                }
                if (i == 1) {
                  vst1q_lane_f32(output_ptr + i, out0, 1);
                }
                if (i == 2) {
                  vst1q_lane_f32(output_ptr + i, out0, 2);
                }
              }
1092
            }
1093 1094 1095
            output_data += hxw;
            input_data += hxw;
            filter_data_tmp += 9;
E
eclipsess 已提交
1096 1097
          }
        }
1098 1099
    */

L
liuruilong 已提交
1100
#endif
E
eclipsess 已提交
1101
}
1102

E
eclipsess 已提交
1103
/// w!=h not fix
H
hjchen2 已提交
1104 1105 1106 1107 1108 1109
void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
1110
#if __ARM_NEON
L
liuruilong 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = 2;
  const int stride_width = 2;
  const int padding_height = 1;
  const int padding_width = 1;
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();

  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
1155 1156 1157 1158 1159 1160
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            output_data[ph * output_width + pw] =
                newscale_data[c] * result + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          } else {
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            output_data[ph * output_width + pw] =
                vget_lane_f32(res, 0) * newscale_data[c] + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
L
liuruilong 已提交
1303
#endif
1304
}
E
eclipsess 已提交
1305

H
hjchen2 已提交
1306 1307
void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
                            const framework::Tensor *filter,
1308
                            framework::Tensor *output, framework::Tensor *bias,
1309
                            bool if_bias, bool if_relu) {
1310
#if __ARM_NEON
E
eclipsess 已提交
1311 1312 1313
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
1314 1315 1316 1317
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }
E
eclipsess 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
  const int out_l = out_h;
  const int in_l = in_h;
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1327
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1328 1329
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
E
eclipsess 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const float *input_row_ptr;
  float *output_row_ptr;

  const int w_times = (out_w - 2) / 3;

  float32x4_t vbias = vdupq_n_f32(0.0);

E
eclipsess 已提交
1339
  float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
E
eclipsess 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
  float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
  int out2in_mid;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
    const float *filter_data_tmp = filter_data;
    for (int j = 0; j < c; ++j) {
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;

      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vaddq_f32(res3, vbias);
1397 1398 1399
          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
E
eclipsess 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
          vst1q_f32(output_row_ptr, res3);

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1423
        if (!if_pad_b) {
E
eclipsess 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vaddq_f32(res3, vbias);
1434 1435 1436
        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
E
eclipsess 已提交
1437 1438 1439 1440

        if ((w4 != w_times)) {
          vst1q_f32(output_row_ptr, res3);
        } else {
E
eclipsess 已提交
1441
          if (out_w - 2 - w_times * 3 == 1) {
E
eclipsess 已提交
1442
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1443
          } else if (out_w - 2 - w_times * 3 == 2) {
E
eclipsess 已提交
1444 1445 1446 1447 1448 1449 1450 1451
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

1452 1453 1454 1455 1456 1457 1458 1459 1460
      // leftTop, rightTop, leftBottom, rightBottom
      int lt = 0;
      int rt = out_w - 1;
      int lb = out_w * (out_h - 1);
      int rb = out_h * out_w - 1;

      output_data_tmp[lt] = input_const[0] * w11 + input_const[1] * w12 +
                            input_const[in_w] * w21 +
                            input_const[in_w + 1] * w22;
E
eclipsess 已提交
1461

E
eclipsess 已提交
1462
      out2in_mid = (out_w - 1) * 2;
1463
      output_data_tmp[rt] =
E
eclipsess 已提交
1464 1465 1466
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1467 1468
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1469

E
eclipsess 已提交
1470
      out2in_mid = (out_h - 1) * 2 * in_w;
E
eclipsess 已提交
1471

1472
      output_data_tmp[lb] =
E
eclipsess 已提交
1473 1474 1475
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1476 1477
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1478
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1479

1480
      output_data_tmp[rb] =
E
eclipsess 已提交
1481 1482 1483
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1484 1485 1486 1487 1488 1489
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
E
eclipsess 已提交
1490
      if (if_bias) {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        output_data_tmp[lt] += bias_data[j];
        output_data_tmp[rt] += bias_data[j];
        output_data_tmp[lb] += bias_data[j];
        output_data_tmp[rb] += bias_data[j];
      }
      if (if_relu) {
        output_data_tmp[lt] = output_data_tmp[lt] < 0 ? 0 : output_data_tmp[lt];
        output_data_tmp[rt] = output_data_tmp[rt] < 0 ? 0 : output_data_tmp[rt];
        output_data_tmp[lb] = output_data_tmp[lb] < 0 ? 0 : output_data_tmp[lb];
        output_data_tmp[rb] = output_data_tmp[rb] < 0 ? 0 : output_data_tmp[rb];
E
eclipsess 已提交
1501 1502 1503
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
1504 1505 1506 1507 1508 1509 1510
        int left = i * out_w;
        output_data_tmp[left] = w01 * input_const[out2in_mid - in_w] +
                                w02 * input_const[out2in_mid - in_w + 1] +
                                w11 * input_const[out2in_mid] +
                                w12 * input_const[out2in_mid + 1] +
                                w21 * input_const[out2in_mid + in_w] +
                                w22 * input_const[out2in_mid + in_w + 1];
E
eclipsess 已提交
1511

E
eclipsess 已提交
1512
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
1513 1514
        int right = i * out_w + out_w - 1;
        output_data_tmp[right] =
E
eclipsess 已提交
1515 1516 1517 1518 1519
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1520 1521 1522
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1523
        if (if_bias) {
1524 1525 1526 1527 1528 1529 1530 1531
          output_data_tmp[left] += bias_data[j];
          output_data_tmp[right] += bias_data[j];
        }
        if (if_relu) {
          output_data_tmp[left] =
              output_data_tmp[left] < 0 ? 0 : output_data_tmp[left];
          output_data_tmp[right] =
              output_data_tmp[right] < 0 ? 0 : output_data_tmp[right];
E
eclipsess 已提交
1532 1533 1534 1535 1536 1537 1538
        }
      }
      filter_data_tmp += 9;
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
L
liuruilong 已提交
1539
#endif
E
eclipsess 已提交
1540 1541
}

H
hjchen2 已提交
1542 1543 1544 1545 1546 1547
void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
                                     const framework::Tensor *filter,
                                     framework::Tensor *output,
                                     const framework::Tensor *new_scale,
                                     const framework::Tensor *new_bias,
                                     bool if_relu) {
1548
#if __ARM_NEON
1549
  // #ifdef _OPENMP
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
  //  const float *newscale_data = new_scale->data<float>();
  //  const float *newbias_data = new_bias->data<float>();
  //
  //  const int batch_size = static_cast<int>(input->dims()[0]);
  //  const int input_channel = static_cast<int>(input->dims()[1]);
  //
  //  const int input_height = static_cast<int>(input->dims()[2]);
  //  const int input_width = static_cast<int>(input->dims()[3]);
  //  const int output_height = static_cast<int>(output->dims()[2]);
  //  const int output_width = static_cast<int>(output->dims()[3]);
  //  const int inhxw = input_height * input_width;
  //  const int outhxw = output_height * output_width;
  //
  //  float32x4_t zero = vdupq_n_f32(0.0);
  //  for (int b = 0; b < batch_size; b++) {
  //    #pragma omp parallel for
  //    for (int c = 0; c < input_channel; c++) {
  //      const float *filter_data = filter->data<float>() + c * 9;
  //      const float *input_data = input->data<float>() + c * inhxw;
  //      float *output_data = output->data<float>() + c * outhxw;
  //      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
  //      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
  //
  //      float w00 = filter_data[0];
  //      float w01 = filter_data[1];
  //      float w02 = filter_data[2];
  //      float w10 = filter_data[3];
  //      float w11 = filter_data[4];
  //      float w12 = filter_data[5];
  //      float w20 = filter_data[6];
  //      float w21 = filter_data[7];
  //      float w22 = filter_data[8];
  //
  //      int m;
  //      for (m = 1; m < output_width - 2; m = m + 3) {
  //        float *output_ptr = output_data + m;
  //        float32x4x2_t input_buff_mid{}, input_buff_bottom{};
  //        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
  //        input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
  //        input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
  //        1));
  //
  //        in0 = input_buff_mid.val[0];
  //        tmp0 = input_buff_mid.val[1];
  //        tmp1 = vextq_f32(in0, zero, 1);
  //
  //        in2 = input_buff_bottom.val[0];
  //        tmp2 = input_buff_bottom.val[1];
  //        tmp3 = vextq_f32(in2, zero, 1);
  //
  //        out0 = vmulq_n_f32(in0, w10);
  //        out0 = vmlaq_n_f32(out0, tmp0, w11);
  //        out0 = vmlaq_n_f32(out0, tmp1, w12);
  //        out0 = vmlaq_n_f32(out0, in2, w20);
  //        out0 = vmlaq_n_f32(out0, tmp2, w21);
  //        out0 = vmlaq_n_f32(out0, tmp3, w22);
  //        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //        if (if_relu) {
  //          out0 = vmaxq_f32(out0, zero);
  //        }
  //        vst1q_lane_f32(output_ptr, out0, 0);
  //        vst1q_lane_f32(output_ptr + 1, out0, 1);
  //        vst1q_lane_f32(output_ptr + 2, out0, 2);
  //      }
  //      for (m = 1; m < output_width - 2; m += 3) {
  //      }
  //      for (int j = m; j < output_width; j++) {
  //        output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
  //        w11 +
  //                         input_data[2 * j + 1] * w12 +
  //                         input_data[2 * j - 1 + input_width] * w20 +
  //                         input_data[2 * j + input_width] * w21 +
  //                         input_data[2 * j + 1 + input_width] * w22;
  //        output_data[j] = newscale_data[c] * output_data[j] +
  //        newbias_data[c]; if (if_relu) {
  //          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
  //        }
  //      }
  //
  //      for (int i = 1; i < output_height; i += 1) {
  //        for (int m = 1; m < output_width - 2; m += 3) {
  //          float *output_ptr = output_data + i * output_width + m;
  //          float32x4x2_t input_buff_top{}, input_buff_mid{},
  //          input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
  //          tmp0, tmp1, tmp2, tmp3,
  //              tmp4, tmp5, out0;
  //          input_buff_top =
  //              vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
  //              1));
  //          input_buff_mid =
  //              vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
  //          input_buff_bottom =
  //              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
  //              1));
  //
  //          in0 = input_buff_top.val[0];
  //          tmp0 = input_buff_top.val[1];
  //          tmp1 = vextq_f32(in0, zero, 1);
  //
  //          in2 = input_buff_mid.val[0];
  //          tmp2 = input_buff_mid.val[1];
  //          tmp3 = vextq_f32(in2, zero, 1);
  //
  //          in4 = input_buff_bottom.val[0];
  //          tmp4 = input_buff_bottom.val[1];
  //          tmp5 = vextq_f32(in4, zero, 1);
  //
  //          out0 = vmulq_n_f32(in0, w00);
  //          out0 = vmlaq_n_f32(out0, tmp0, w01);
  //          out0 = vmlaq_n_f32(out0, tmp1, w02);
  //          out0 = vmlaq_n_f32(out0, in2, w10);
  //          out0 = vmlaq_n_f32(out0, tmp2, w11);
  //          out0 = vmlaq_n_f32(out0, tmp3, w12);
  //          out0 = vmlaq_n_f32(out0, in4, w20);
  //          out0 = vmlaq_n_f32(out0, tmp4, w21);
  //          out0 = vmlaq_n_f32(out0, tmp5, w22);
  //          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //          if (if_relu) {
  //            out0 = vmaxq_f32(out0, zero);
  //          }
  //          vst1q_lane_f32(output_ptr, out0, 0);
  //          vst1q_lane_f32(output_ptr + 1, out0, 1);
  //          vst1q_lane_f32(output_ptr + 2, out0, 2);
  //        }
  //        int m;
  //        for (m = 1; m < output_width - 2; m += 3) {
  //        }
  //        for (int j = m; j < output_width; j++) {
  //          output_data[i * output_width + j] =
  //              input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
  //              input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
  //              input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
  //              input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
  //              input_data[(2 * i) * input_width + 2 * j] * w11 +
  //              input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
  //              input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
  //              input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
  //              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
  //          output_data[i * output_width + j] =
  //              newscale_data[c] * output_data[i * output_width + j] +
  //              newbias_data[c];
  //          if (if_relu) {
  //            output_data[i * output_width + j] =
  //                output_data[i * output_width + j] < 0
  //                    ? 0
  //                    : output_data[i * output_width + j];
  //          }
  //        }
  //      }
  //      output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
  //                       input_data[input_height] * w21 +
  //                       input_data[input_height + 1] * w22;
  //
  //      output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
  //      if (if_relu) {
  //        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
  //      }
  //      for (int i = 1; i < output_height; i++) {
  //        output_data[i * output_width] =
  //            input_data[(2 * i - 1) * input_width] * w01 +
  //            input_data[(2 * i - 1) * input_width + 1] * w02 +
  //            input_data[(2 * i) * input_width] * w11 +
  //            input_data[(2 * i) * input_width + 1] * w12 +
  //            input_data[(2 * i + 1) * input_width] * w21 +
  //            input_data[(2 * i + 1) * input_width + 1] * w22;
  //
  //        output_data[i * output_width] =
  //            newscale_data[c] * output_data[i * output_width] +
  //            newbias_data[c];
  //        if (if_relu) {
  //          output_data[i * output_width] = output_data[i * output_width] < 0
  //                                              ? 0
  //                                              : output_data[i *
  //                                              output_width];
  //        }
  //      }
  //    }
  //  }
  //
1729
  // #else
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
E
eclipsess 已提交
1741 1742
  //  const int out_l = out_h;
  //  const int in_l = in_h;
1743 1744
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1745
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1746 1747
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
1748 1749 1750 1751 1752
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int w_times = (out_w - 2) / 3;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
1753
#pragma omp parallel for
1754 1755 1756 1757 1758 1759 1760 1761
    for (int j = 0; j < c; j++) {
      const float *input_row_ptr;
      float *output_row_ptr;
      float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
      float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
      int out2in_mid;
      float32x4_t vnewbias = vdupq_n_f32(0.0);
      float32x4_t vnewscale = vdupq_n_f32(1.0);
1762 1763 1764
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;
1765
      const float *filter_data_tmp = filter_data + 9 * j;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
      vnewbias = vdupq_n_f32(newbias_data[j]);
      vnewscale = vdupq_n_f32(newscale_data[j]);

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vmlaq_f32(vnewbias, vnewscale, res3);

          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
1816 1817 1818
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1841
        if (!if_pad_b) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vmlaq_f32(vnewbias, vnewscale, res3);

        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
        if ((w4 != w_times)) {
1857 1858 1859
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1860
        } else {
E
eclipsess 已提交
1861
          if (out_w - 2 - w_times * 3 == 1) {
1862
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1863
          } else if (out_w - 2 - w_times * 3 == 2) {
1864 1865 1866 1867 1868 1869 1870 1871 1872
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
E
eclipsess 已提交
1873 1874
                           input_const[in_w] * w21 +
                           input_const[in_w + 1] * w22;
1875

E
eclipsess 已提交
1876
      out2in_mid = (out_w - 1) * 2;
E
eclipsess 已提交
1877
      output_data_tmp[out_w - 1] =
1878 1879 1880
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1881 1882
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
1883

E
eclipsess 已提交
1884
      out2in_mid = (out_h - 1) * 2 * in_w;
1885

E
eclipsess 已提交
1886
      output_data_tmp[out_w * (out_h - 1)] =
1887 1888 1889
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1890 1891
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1892
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
1893

E
eclipsess 已提交
1894
      output_data_tmp[out_h * out_w - 1] =
1895 1896 1897
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1898 1899 1900 1901 1902 1903
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
1904 1905
      output_data_tmp[0] =
          output_data_tmp[0] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
1906 1907 1908 1909
      output_data_tmp[out_w - 1] =
          output_data_tmp[out_w - 1] * newscale_data[j] + newbias_data[j];
      output_data_tmp[out_w * (out_h - 1)] =
          output_data_tmp[out_w * (out_h - 1)] * newscale_data[j] +
1910
          newbias_data[j];
E
eclipsess 已提交
1911 1912
      output_data_tmp[out_h * out_w - 1] =
          output_data_tmp[out_h * out_w - 1] * newscale_data[j] +
1913 1914 1915
          newbias_data[j];
      if (if_relu) {
        output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 : output_data_tmp[0];
E
eclipsess 已提交
1916 1917 1918 1919
        output_data_tmp[out_w - 1] =
            output_data_tmp[out_w - 1] < 0 ? 0 : output_data_tmp[out_w - 1];
        output_data_tmp[out_w * (out_h - 1)] =
            output_data_tmp[out_w * (out_h - 1)] < 0
1920
                ? 0
E
eclipsess 已提交
1921 1922 1923
                : output_data_tmp[out_w * (out_h - 1)];
        output_data_tmp[out_h * out_w - 1] =
            output_data_tmp[out_h * out_w - 1] < 0
1924
                ? 0
E
eclipsess 已提交
1925
                : output_data_tmp[out_h * out_w - 1];
1926 1927 1928
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
E
eclipsess 已提交
1929
        output_data_tmp[i * out_w] = w01 * input_const[out2in_mid - in_w] +
1930 1931 1932 1933 1934
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];
1935

E
eclipsess 已提交
1936
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1937
        output_data_tmp[i * out_w + out_w - 1] =
1938 1939 1940 1941 1942
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1943 1944 1945
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1946 1947 1948 1949
        output_data_tmp[i * out_w] =
            output_data_tmp[i * out_w] * newscale_data[j] + newbias_data[j];
        output_data_tmp[i * out_w + out_w - 1] =
            output_data_tmp[i * out_w + out_w - 1] * newscale_data[j] +
1950 1951
            newbias_data[j];
        if (if_relu) {
E
eclipsess 已提交
1952 1953 1954 1955
          output_data_tmp[i * out_w] =
              output_data_tmp[i * out_w] < 0 ? 0 : output_data_tmp[i * out_w];
          output_data_tmp[i * out_w + out_w - 1] =
              output_data_tmp[i * out_w + out_w - 1] < 0
1956
                  ? 0
E
eclipsess 已提交
1957
                  : output_data_tmp[i * out_w + out_w - 1];
1958 1959 1960 1961 1962 1963
        }
      }
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
1964 1965 1966 1967
// #endif
#endif
}

H
hjchen2 已提交
1968 1969
void DepthwiseConv3x3s2p0(const framework::Tensor *input,
                          const framework::Tensor *filter,
1970
                          framework::Tensor *output, framework::Tensor *bias,
1971
                          bool if_bias, bool if_relu) {
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
#if __ARM_NEON
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);
  const int inhxw = input_height * input_width;
  const int outhxw = output_height * output_width;

  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
    for (int c = 0; c < input_channel; c++) {
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * inhxw;
1989 1990 1991 1992 1993 1994
      const float *bias_data;
      float32x4_t biasv;
      if (if_bias) {
        bias_data = bias->data<float>() + c;
        biasv = vld1q_dup_f32(bias_data);
      }
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
      float *output_data = output->data<float>() + c * outhxw;
      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
      for (int i = 0; i < output_height; i += 1) {
        for (int m = 0; m < output_width - 2; m += 3) {
          float *output_ptr = output_data + i * output_width + m;
          float32x4x2_t input_buff_top{}, input_buff_mid{}, input_buff_bottom{};
          float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3,
              tmp4, tmp5, out0;
          input_buff_top =
              vld2q_f32(input_data + (2 * i) * input_width + (2 * m));
          input_buff_mid =
              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m));
          input_buff_bottom =
              vld2q_f32(input_data + (2 * i + 2) * input_width + (2 * m));

          in0 = input_buff_top.val[0];
          tmp0 = input_buff_top.val[1];
          tmp1 = vextq_f32(in0, zero, 1);

          in2 = input_buff_mid.val[0];
          tmp2 = input_buff_mid.val[1];
          tmp3 = vextq_f32(in2, zero, 1);

          in4 = input_buff_bottom.val[0];
          tmp4 = input_buff_bottom.val[1];
          tmp5 = vextq_f32(in4, zero, 1);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
2039 2040 2041
          if (if_bias) {
            out0 = vaddq_f32(out0, biasv);
          }
2042 2043 2044
          if (if_relu) {
            out0 = vmaxq_f32(out0, zero);
          }
2045 2046 2047 2048 2049 2050 2051 2052
          vst1q_lane_f32(output_ptr, out0, 0);
          vst1q_lane_f32(output_ptr + 1, out0, 1);
          vst1q_lane_f32(output_ptr + 2, out0, 2);
        }
        int m;
        for (m = 0; m < output_width - 2; m += 3) {
        }
        for (int j = m; j < output_width; j++) {
2053 2054
          int index = i * output_width + j;
          output_data[index] =
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
              input_data[(2 * i) * input_width + 2 * j] * w00 +
              input_data[(2 * i) * input_width + 2 * j + 1] * w01 +
              input_data[(2 * i) * input_width + 2 * j + 2] * w02 +
              input_data[(2 * i + 1) * input_width + 2 * j] * w10 +
              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w11 +
              input_data[(2 * i + 1) * input_width + 2 * j + 2] * w12 +
              input_data[(2 * i + 2) * input_width + 2 * j] * w20 +
              input_data[(2 * i + 2) * input_width + 2 * j + 1] * w21 +
              input_data[(2 * i + 2) * input_width + 2 * j + 2] * w22;
          if (if_bias) {
2065 2066 2067 2068 2069
            output_data[index] += *bias_data;
          }
          if (if_relu) {
            output_data[index] =
                output_data[index] < 0 ? 0 : output_data[index];
2070
          }
2071 2072 2073 2074 2075
        }
      }
    }
  }

L
liuruilong 已提交
2076
#endif
E
eclipsess 已提交
2077 2078
}

W
wangliu 已提交
2079 2080 2081
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile