executor.cpp 36.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
H
hjchen2 已提交
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
37 38

namespace paddle_mobile {
39
namespace framework {
40

W
wangliu 已提交
41 42
#pragma mark - executor

43
template <typename Device, typename T>
44 45
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
46 47
}

48
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
49 50 51 52
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
53
    : program_(program),
H
hjchen2 已提交
54 55
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
56 57
      lod_mode_(lod_mode),
      config_(config) {
58 59
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
60
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
61
  variable_ptr->SetValue<int>(batch_size);
62 63

  program_desc_ =
Refine  
陈后江 已提交
64
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
65 66
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
67 68
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
69 70 71
  if (config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
72
  }
73
#endif
74 75 76 77
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
78 79 80 81 82 83 84 85
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
86
        op_desc->GetAttrMap(), program_.scope.get());
87 88 89 90
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
91
    }
92
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
93
  }
94 95 96
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
97
  if (program_.combined) {
L
liuruilong 已提交
98 99 100 101
    InitCombineMemory();
  } else {
    InitMemory();
  }
102
  int count = 0;
103 104 105
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
106
  }
W
wangliu 已提交
107 108
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

136
template <typename T>
137
static void LoadMemInternal(void **data, LoDTensor *tensor,
138
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
139
  char **data_buf = reinterpret_cast<char **>(data);
140
  int64_t size = tensor->numel();
141
  T *tensor_data = tensor->mutable_data<T>();
142 143
  if (quant_uint8) {
    // should be moved into operator init function
144 145
    float min_value;
    float max_value;
146 147 148
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
149
    const float factor = (max_value - min_value) / 255.0;
150
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
151 152
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
153
    }
154
    *data_buf += size * sizeof(uint8_t);
155
  } else {
156 157
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
158
  }
159
}
W
wangliu 已提交
160

161 162 163 164
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
165
  char **data_buf = reinterpret_cast<char **>(data);
166
  // version
167
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
168
  *data_buf += sizeof(uint32_t);
169
  // lod information
H
hjchen2 已提交
170 171
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
172
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
173
  *data_buf += sizeof(uint64_t);
174 175 176 177

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
178
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
179
    *data_buf += sizeof(uint64_t);
180
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
181
    memory::Copy(tmp_dim.data(), *data_buf, size);
182
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
183
    *data_buf += size;
W
wangliu 已提交
184
  }
185
  // tensor version
186
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
187
  *data_buf += sizeof(uint32_t);
188
  // tensor desc size
189
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
190
  *data_buf += sizeof(int32_t);
191
  // skip tensor desc
Refine  
陈后江 已提交
192
  *data_buf += tensor_desc_size;
193

194 195
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
196 197
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
198
    case VARTYPE_TYPE_FP32:
199 200
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
201
      break;
202
    case VARTYPE_TYPE_INT8:
203
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
204
      break;
205
    case VARTYPE_TYPE_INT32:
206
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
207 208
      break;
    default:
209
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
210
  }
W
wangliu 已提交
211 212
}

213 214 215
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
216 217 218 219
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
220
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
221 222
          continue;
        }
H
hjchen2 已提交
223
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
224
        char *origin_data =
Refine  
陈后江 已提交
225
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
226
        char *data = origin_data;
H
update  
hjchen2 已提交
227
        auto tensor = var->template GetMutable<LoDTensor>();
228 229
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
230
      } else {
231
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
232
        varInputMemory(var_desc, var);
W
wangliu 已提交
233 234 235 236 237
      }
    }
  }
}

238 239
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
240
  char *origin_data = nullptr;
Refine  
陈后江 已提交
241
  bool self_alloc = false;
242
  if (program_.combined_params_buf && program_.combined_params_len) {
243 244
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
245 246 247 248
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
249
  } else {
Refine  
陈后江 已提交
250
    self_alloc = true;
Refine  
陈后江 已提交
251
    origin_data = ReadFileToBuff(program_.para_path);
252 253 254 255
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
256
  }
Refine  
陈后江 已提交
257 258
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
259
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
260 261 262 263
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
264
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
265 266
          continue;
        }
L
liuruilong 已提交
267 268

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
269
        auto tensor = var->template GetMutable<LoDTensor>();
270
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
271
      } else {
H
update  
hjchen2 已提交
272 273
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
274 275 276
      }
    }
  }
Refine  
陈后江 已提交
277
  if (self_alloc) {
278
    delete[] origin_data;
Refine  
陈后江 已提交
279 280
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
281
}
282

C
Chon 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
297
template <typename Device, typename T>
L
liuruilong 已提交
298
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
299 300 301 302 303 304
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
305
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
306 307 308 309 310
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
311 312 313 314
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
315
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
316 317 318
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
319 320 321 322 323 324 325 326 327 328
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

329 330
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
331
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
332
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
333
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
334 335 336
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
337
  tensor->init(type_id<float>().hash_code());
338
#endif
339 340
  return true;
#endif
H
update  
hjchen2 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
354
  }
H
update  
hjchen2 已提交
355
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
356
}
L
liuruilong 已提交
357

358 359 360 361 362
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
363
  }
364 365 366 367 368 369 370 371
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
372
  }
373
  return this->Predict();
W
wangliu 已提交
374
}
xiebaiyuan's avatar
xiebaiyuan 已提交
375

376 377 378
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
379 380 381 382 383 384 385
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
386
  Tensor feed_tensor(input, make_ddim(dims));
387
  SetInput(feed_tensor, input_name);
388 389
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
390 391
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
392 393 394 395 396 397
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
398

399 400 401
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
402
  int index = 0;
403
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
404
    index = feed_indices_.find(var_name)->second;
405
  }
H
hjchen2 已提交
406 407 408 409 410 411
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
412 413 414 415 416
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
417
}
xiebaiyuan's avatar
xiebaiyuan 已提交
418

419 420 421
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
422
  int index = 0;
423
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
424
    index = feed_indices_.find(var_name)->second;
425
  }
H
hjchen2 已提交
426 427 428 429 430 431 432
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
433 434 435 436 437
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
438 439 440 441 442
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
443 444 445 446 447 448 449 450 451
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
452

453 454 455 456 457 458 459
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
460
}
xiebaiyuan's avatar
xiebaiyuan 已提交
461

462 463
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
464
#if _OPENMP
465
  omp_set_num_threads(CPUContext::Context()->get_thread_num());
466
#endif
467 468 469 470
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
471
#ifdef PADDLE_MOBILE_PROFILE
472
  std::vector<ProfInfo> profile(ops_of_block0_.size());
473 474
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
475
#endif
476
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
477
#ifdef PADDLE_MOBILE_PROFILE
478 479
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
480
#endif
H
hjchen2 已提交
481
    DLOG << "run op: " << op_handler->Type();
482
    if (lod_mode_ && input_dim_has_changed_) {
483 484 485
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
486
#ifdef PADDLE_MOBILE_PROFILE
487 488 489
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
490 491
#endif
  }
492 493 494
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = false;
  }
495 496 497 498 499 500 501

#ifdef PADDLE_MOBILE_PROFILE
  PrintProfile(profile);
#endif
  return PMSuccess;
}

xiebaiyuan's avatar
xiebaiyuan 已提交
502
#ifdef PADDLE_MOBILE_PROFILE
503 504 505
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
506 507 508 509
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
510 511 512 513 514 515
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
516
      int kernel_size = filter->dims()[2];
517 518
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
519
    } else {
520
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
521
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
522
  }
H
hjchen2 已提交
523
  printf("====================[ profile ]======================\n");
524
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
540
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
541
}
542
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

570
#ifdef PADDLE_MOBILE_FPGA
571 572 573 574
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
575
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
576 577
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
578
}
579

580 581
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
582
  InjectVariable(t, "feed0");
583
}
584

585
template <typename Device, typename T>
586
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
587
  auto input_size = v.size();
Z
zhangyang0701 已提交
588
  int index = 0;
589 590 591
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
592
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
593
    auto var = program_.scope->Var("feed", i + index);
594 595 596 597 598 599 600 601 602
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
603 604
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
605 606
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
607

608
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
609
    auto var = program_.scope->Var("fetch", i + index);
610 611
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
612
  }
613
}
614

615
template <typename Device, typename T>
616 617 618 619
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
620
}
621

622 623
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
624
  auto &ops = ops_of_block0_;
625

Z
zhangyang 已提交
626 627 628 629 630
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
631 632 633
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
634
}
635

636 637
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
638
  auto &ops = ops_of_block0_;
639
  end = end < 0 ? static_cast<int>(ops.size()) : end;
640 641 642 643 644 645 646 647 648 649 650 651
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
652
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
653 654 655 656 657 658 659
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
660
}
661

662 663
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
664
  Predict_From_To(start);
665
}
666

667 668
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
669
  Predict_From_To(0, end);
670
}
671 672 673 674 675 676
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
677 678
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
718 719 720 721 722 723
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
724 725 726 727 728 729 730 731
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
732 733 734 735 736 737
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
738 739 740 741 742 743
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
744
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
745 746
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
747
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
748 749 750 751 752 753 754
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
755
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
756 757 758 759
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
760
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
779

xiebaiyuan's avatar
xiebaiyuan 已提交
780 781 782
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
783 784 785 786 787 788 789
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
790 791 792 793 794

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
795
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
796
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
797
    if (input_dim_last_ != input.dims()) {
798 799 800
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
801 802 803 804 805 806 807 808
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
809 810 811
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
812 813
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
814 815
}

816 817 818
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
819

Y
yangfei 已提交
820
template <>
H
hjchen2 已提交
821 822
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

860
  const TensorDesc &desc = var_desc.Tensor_desc();
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
895

Y
yangfei 已提交
896
template <>
897 898
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
899 900 901
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
902
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
903
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
904
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
905
          continue;
L
liuruilong 已提交
906
        } else {
907
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
908
        }
L
liuruilong 已提交
909

Y
yangfei 已提交
910
        char *origin_data =
L
liuruilong 已提交
911
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
912
        char *data = origin_data;
Y
yangfei 已提交
913
        cl_context context = program_.scope->GetCLScpoe()->Context();
914
        const TensorDesc &desc = var_desc->Tensor_desc();
915 916 917 918 919
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
920
        float *tensorInput = static_cast<float *>(
921 922
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
923

924
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
925

L
liuruilong 已提交
926 927
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
928

929
        delete origin_data;
Y
yangfei 已提交
930
        paddle_mobile::memory::Free(tensorInput);
931
      } else {
932 933
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
934
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
935 936
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
937

938 939 940
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
941
          DLOG << var_desc->Name();
L
liuruilong 已提交
942
          cl_image->InitEmptyImage(context, command_queue, ddim);
943
        }
Y
yangfei 已提交
944 945 946 947
      }
    }
  }
}
948

Y
yangfei 已提交
949
template <>
950
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
951 952
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
953 954
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
955 956
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
957
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
958 959 960 961
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
962 963
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
964
    self_alloc = true;
L
liuruilong 已提交
965
    origin_data = ReadFileToBuff(program_.para_path);
966 967 968 969
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
970 971
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
972
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
973

974
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
975 976 977
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
978
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
979
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
980
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
981
          continue;
L
liuruilong 已提交
982
        } else {
983
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
984 985 986 987
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

988 989
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
990 991 992 993 994

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
995 996 997
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
998 999 1000 1001

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1002 1003
        paddle_mobile::memory::Free(tensorInput);
      } else {
1004
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1005
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1006 1007
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1008 1009
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
            if (ddim[i] != 0) {
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1027
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1028
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1029 1030 1031
      }
    }
  }
Y
yangfei 已提交
1032
  if (self_alloc) {
1033
    delete data;
Y
yangfei 已提交
1034
  }
Y
yangfei 已提交
1035
  LOG(kLOG_INFO) << " end init combine memory ";
1036
}
Y
yangfei 已提交
1037 1038 1039

#endif

1040
template class Executor<CPU, float>;
Y
yangfei 已提交
1041

1042
template class Executor<FPGA, float>;
W
wangliu 已提交
1043

1044
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1045

1046
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
1047 1048

}  // namespace framework
W
wangliu 已提交
1049
}  // namespace paddle_mobile