executor.cpp 33.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
L
update  
liuruilong 已提交
29

D
dolphin8 已提交
30
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
31 32 33 34
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
35

L
update  
liuruilong 已提交
36 37 38 39
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

W
wangliu 已提交
40
namespace paddle_mobile {
41 42
namespace framework {

W
wangliu 已提交
43 44
using framework::Variable;

L
liuruilong 已提交
45 46
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
47 48
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
49
  fseek(file, 0, SEEK_END);
50
  int64_t size = ftell(file);
L
liuruilong 已提交
51 52 53 54
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
55 56
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
57 58
  fclose(file);
  return data;
W
wangliu 已提交
59 60 61
}

#pragma mark - executor
62

Y
yangfei 已提交
63
template <typename Dtype, Precision P>
L
liuruilong 已提交
64
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
xiebaiyuan's avatar
xiebaiyuan 已提交
65
                             bool use_optimize, bool loddable)
Y
yangfei 已提交
66 67 68 69
    : program_(p),
      batch_size_(batch_size),
      use_optimize_(use_optimize),
      loddable_(loddable) {
W
wangliu 已提交
70 71 72 73 74 75 76
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
77 78
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
W
wangliu 已提交
79
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
Y
yangfei 已提交
80
      to_predict_program_->Blocks();
D
dolphin8 已提交
81 82 83
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
84
  DLOG << "executer in loaddable mode: " << loddable_;
W
wangliu 已提交
85 86 87 88 89
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
Z
zhangyang 已提交
90
      DLOG << "create op: " << j << "  " << op->Type();
W
wangliu 已提交
91
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
Y
yangfei 已提交
92 93
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
94 95 96 97 98
      // use pre_infershape to pre resize , but if u use an lod mode tensor u
      // need to resize in runtime
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
99
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
100 101 102
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
103
    }
104
    DLOG << "Total " << ops.size() << " ops have been created ";
W
wangliu 已提交
105
  }
W
wangliu 已提交
106
  if (program_.combined) {
L
liuruilong 已提交
107 108 109 110
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
111
  std::shared_ptr<framework::BlockDesc> to_predict_block =
Y
yangfei 已提交
112
      to_predict_program_->Block(0);
L
liuruilong 已提交
113
  auto &ops = ops_of_block_[*to_predict_block.get()];
Z
zhangyang 已提交
114
  int i = 0;
L
liuruilong 已提交
115
  for (const auto &op : ops) {
Z
zhangyang 已提交
116
    DLOG << "Init op: " << i++ << "  " << op->Type();
L
liuruilong 已提交
117 118
    op->Init();
  }
W
wangliu 已提交
119 120
}

Y
yangfei 已提交
121
template <typename Dtype, Precision P>
W
wangliu 已提交
122
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
123
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
124
  // 1. version
125 126 127
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
128 129

  // 2 Lod information
L
liuruilong 已提交
130
  uint64_t *lod_level_ptr = new uint64_t();
131
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
132 133
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
134
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
135

W
wangliu 已提交
136 137 138
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
139 140
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
W
wangliu 已提交
141
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
142 143

    for (int k = 0; k < tmp.size(); ++k) {
144 145
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
146 147
    }

W
wangliu 已提交
148 149 150 151 152 153 154
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
155 156
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
157 158

  // 4. tensor desc
159 160
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
161

W
wangliu 已提交
162
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
163
  for (int m = 0; m < size; ++m) {
164
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
165
  }
166
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
167 168 169 170 171 172 173 174 175

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

176
  void *memory = nullptr;
W
wangliu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
xiebaiyuan's avatar
xiebaiyuan 已提交
190
      memory = tensor->mutable_data<int32_t>();
W
wangliu 已提交
191 192 193 194 195 196 197 198 199 200 201
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }
W
wangliu 已提交
202 203 204 205 206 207 208 209
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
H
hanbuhe 已提交
210
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
W
wangliu 已提交
211 212 213 214 215
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
216 217 218 219 220 221 222 223
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
W
wangliu 已提交
224 225
    }
    (*data) += (sizeof(char) * memory_size * type_size);
L
liuruilong 已提交
226
  }
W
wangliu 已提交
227 228
}

Y
yangfei 已提交
229
template <typename Dtype, Precision P>
W
wangliu 已提交
230 231 232 233 234 235 236 237 238
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
239

L
liuruilong 已提交
240
        char *origin_data =
Y
yangfei 已提交
241
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
242
        char *data = origin_data;
243
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
244

L
liuruilong 已提交
245
        delete origin_data;
W
wangliu 已提交
246 247
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253
          bool is_mute_match;
          framework::LoDTensor *tensor = nullptr;

          is_mute_match = varInputMemory(var_desc, var, tensor);

          PADDLE_MOBILE_ENFORCE(
Y
yangfei 已提交
254 255 256
              is_mute_match,
              "got unhandled var_desc->Tensor_desc().DataType(): %d",
              var_desc->Tensor_desc().DataType());
W
wangliu 已提交
257 258 259 260 261 262
        }
      }
    }
  }
}

Y
yangfei 已提交
263
template <typename Dtype, Precision P>
L
liuruilong 已提交
264
void Executor<Dtype, P>::InitCombineMemory() {
265 266 267
  char *origin_data;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
Y
yangfei 已提交
268
    origin_data = (char *)program_.combined_params_buf;
269 270 271 272 273
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    origin_data = Get_binary_data(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
L
liuruilong 已提交
274
  char *data = origin_data;
L
liuruilong 已提交
275 276 277 278 279 280 281 282
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
283
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
284 285
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
xiebaiyuan's avatar
xiebaiyuan 已提交
286 287 288 289 290 291
          bool is_mute_match = false;
          framework::LoDTensor *tensor;

          is_mute_match = varInputMemory(var_desc, var, tensor);

          PADDLE_MOBILE_ENFORCE(
Y
yangfei 已提交
292 293 294
              is_mute_match,
              "got unhandled var_desc->Tensor_desc().DataType(): %d",
              var_desc->Tensor_desc().DataType());
L
liuruilong 已提交
295 296 297 298 299
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
300
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
301
}
L
liuruilong 已提交
302

Y
yangfei 已提交
303
template <typename Dtype, Precision P>
xiebaiyuan's avatar
xiebaiyuan 已提交
304
bool Executor<Dtype, P>::varInputMemory(
Y
yangfei 已提交
305 306
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  bool is_mute_match = false;
  switch (var_desc->Tensor_desc().DataType()) {
    case framework::VARTYPE_TYPE_FP16: {
      break;
    }

    case framework::VARTYPE_TYPE_FP32: {
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<Ptype>();
      is_mute_match = true;
      break;
    }

    case framework::VARTYPE_TYPE_FP64: {
      break;
    }

    case framework::VARTYPE_TYPE_INT32: {
xiebaiyuan's avatar
xiebaiyuan 已提交
325 326 327
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<int32_t>();
      is_mute_match = true;
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
      break;
    }

    case framework::VARTYPE_TYPE_INT64: {
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<int64_t>();
      is_mute_match = true;
      break;
    }
    case framework::VARTYPE_TYPE_BOOL: {
      break;
    }

Y
yangfei 已提交
341
    default: { break; }
xiebaiyuan's avatar
xiebaiyuan 已提交
342 343 344 345
  }

  return is_mute_match;
}
L
liuruilong 已提交
346

Y
yangfei 已提交
347
template <typename Dtype, Precision P>
W
wangliu 已提交
348
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
Y
yangfei 已提交
349
    const framework::Tensor &t) {
W
wangliu 已提交
350 351
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
Y
yangfei 已提交
352
      g_feed_value->GetMutable<framework::LoDTensor>();
W
wangliu 已提交
353 354 355
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
Y
yangfei 已提交
356
      to_predict_program_->Block(0);
D
dolphin8 已提交
357
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
358

D
dolphin8 已提交
359
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
360
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
361
#endif
D
dolphin8 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
401
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
402 403 404 405
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
406
#endif
D
dolphin8 已提交
407
        ops[opi]->Run();
D
dolphin8 已提交
408
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
409 410
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
411
#endif
D
dolphin8 已提交
412 413 414
        finishF(opi);
      });
    }
W
wangliu 已提交
415
  }
D
dolphin8 已提交
416 417
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
418
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
419 420 421 422
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
423
    // to Run
D
dolphin8 已提交
424 425 426 427 428
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
429 430
  }
#endif
W
wangliu 已提交
431 432 433 434 435
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
Y
yangfei 已提交
436 437
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
438 439
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
440 441
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
456
  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
457 458 459 460 461
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
462 463 464
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
465
  }
466
  //  fclose(pf);
D
dolphin8 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
480 481 482
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
483 484 485
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
486
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
487
}
xiebaiyuan's avatar
xiebaiyuan 已提交
488

Y
yangfei 已提交
489
template <typename Dtype, Precision P>
xiebaiyuan's avatar
xiebaiyuan 已提交
490
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
Y
yangfei 已提交
491
    const framework::LoDTensor &t) {
xiebaiyuan's avatar
xiebaiyuan 已提交
492 493
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
Y
yangfei 已提交
494
      g_feed_value->GetMutable<framework::LoDTensor>();
xiebaiyuan's avatar
xiebaiyuan 已提交
495 496 497 498 499
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
Y
yangfei 已提交
500
      to_predict_program_->Block(0);
xiebaiyuan's avatar
xiebaiyuan 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
#ifdef PADDLE_MOBILE_PROFILE
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
#endif
        ops[opi]->Run();
#ifdef PADDLE_MOBILE_PROFILE
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
        finishF(opi);
      });
    }
  }
#else
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    // to Run
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
#endif
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
Y
yangfei 已提交
585 586
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
xiebaiyuan's avatar
xiebaiyuan 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
  //  FILE *pf = fopen("profile.out", "w");
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
  }
  //  fclose(pf);
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
Y
yangfei 已提交
636
      framework::LoDTensor(*output_tensor));
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638
}

Y
yangfei 已提交
639
template <typename Dtype, Precision P>
W
wangliu 已提交
640
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
Y
yangfei 已提交
641
    const framework::Tensor &t, int block_id) {
W
wangliu 已提交
642
  return Predict(t);
W
wangliu 已提交
643 644
}

Y
yangfei 已提交
645
template <typename Dtype, Precision P>
L
liuruilong 已提交
646
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
Y
yangfei 已提交
647
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
W
wangliu 已提交
648
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
649 650
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
Y
yangfei 已提交
651
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
W
wangliu 已提交
652 653 654 655 656
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
657 658
}

659
#ifdef PADDLE_MOBILE_FPGA
660

661
template <typename Dtype, Precision P>
662 663 664
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
                                        string var_name) {
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
665 666 667 668 669 670
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
};

671 672 673 674 675
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
};

676
template <typename Dtype, Precision P>
677
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
678 679 680
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
681 682 683 684 685

  PADDLE_MOBILE_ENFORCE(id < ops.size(), "Index out of range");
  auto last_op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = last_op->Outputs();
  std::vector<std::string> out_keys = last_op->GetOutKeys();
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "the last op contains no output");
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
  end = end < 0 ? (int)ops.size() : end;
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
710
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
};
#endif

Y
yangfei 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
#ifdef PADDLE_MOBILE_FPGA

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
                                        string var_name) {
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
};

template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];

  PADDLE_MOBILE_ENFORCE(id < ops.size(), "Index out of range");
  auto last_op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = last_op->Outputs();
  std::vector<std::string> out_keys = last_op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "the last op contains no output");
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
  end = end < 0 ? (int)ops.size() : end;
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
};
#endif

#ifdef PADDLE_MOBILE_CL
Y
yangfei 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
template <>
        void Executor<GPU_CL, Precision::FP32>::LoadMemory(const framework::VarDesc var_desc,
                                            float *tensorInput, char **data) {
            // 1. version
            uint32_t version = *reinterpret_cast<uint32_t *>(*data);

            (*data) += sizeof(uint32_t);

            // 2 Lod information
            uint64_t *lod_level_ptr = new uint64_t();
            memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
            uint64_t lod_level = *lod_level_ptr;
            delete lod_level_ptr;
            (*data) += sizeof(uint64_t);

            for (uint64_t i = 0; i < lod_level; ++i) {
                uint64_t size = *reinterpret_cast<uint64_t *>(*data);
                (*data) += sizeof(uint64_t);
                std::vector<size_t> tmp(size / sizeof(size_t));

                for (int k = 0; k < tmp.size(); ++k) {
                    tmp[k] = *reinterpret_cast<size_t *>(*data);
                    (*data) += sizeof(size_t);
                }
            }

            // 3. tensor version
            uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
            (*data) += sizeof(uint32_t);

            // 4. tensor desc
            int32_t size = *reinterpret_cast<int32_t *>(*data);
            (*data) += sizeof(int32_t);

            std::unique_ptr<char[]> buf(new char[size]);
            for (int m = 0; m < size; ++m) {
                buf.get()[m] = (*data)[m];
            }
            (*data) += (sizeof(char) * size);

            const framework::TensorDesc &desc = var_desc.Tensor_desc();
            int memory_size = 1;
            for (auto l : desc.Dims()) {
                memory_size *= l;
            }

            void *memory = nullptr;
//            int type_size = 0;
//            switch (desc.DataType()) {
//                case framework::VARTYPE_TYPE_FP16:
//                    type_size = 2;
//                    break;
//                case framework::VARTYPE_TYPE_FP32:
//                    type_size = 4;
//                    memory = tensor->mutable_data<float>();
//                    break;
//                case framework::VARTYPE_TYPE_FP64:
//                    type_size = 8;
//                    break;
//                case framework::VARTYPE_TYPE_INT32:
//                    memory = tensor->mutable_data<int32_t>();
//                    type_size = 4;
//                    break;
//                case framework::VARTYPE_TYPE_INT64:
//                    type_size = 8;
//                    break;
//                case framework::VARTYPE_TYPE_BOOL:
//                    type_size = 1;
//                    break;
//                default:
//                    break;
//            }
            int type_size = 4;
            memory = tensorInput;
            if (program_.quantification) {
                float min_value;
                float max_value;

                memcpy(&min_value, *data, sizeof(float));
                memcpy(&max_value, *data + sizeof(float), sizeof(float));
                *data += 2 * sizeof(float);
                const float factor = (max_value - min_value) / 255.0;
                uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
                for (int k = 0; k < memory_size; ++k) {
                    static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
                }
                *data += (memory_size * sizeof(uint8_t));
            } else {
                for (int n = 0; n < memory_size; n++) {
                    float value;
                    memcpy(&value, *data + n * type_size, type_size);
                    if (value < 1e-30 && value > -1e-30) {
                        static_cast<float *>(memory)[n] = 0.0;
                    } else {
                        static_cast<float *>(memory)[n] = value;
                    }
                }
                (*data) += (sizeof(char) * memory_size * type_size);
            }
        }
904

Y
yangfei 已提交
905 906 907 908 909 910 911 912 913 914 915 916
template <>
void Executor<GPU_CL, Precision::FP32>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto cl_image = var->template GetMutable<framework::CLImage>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
Y
yangfei 已提交
917
          char *data = origin_data;
Y
yangfei 已提交
918
        cl_context context = program_.scope->GetCLScpoe()->Context();
Y
yangfei 已提交
919 920 921 922 923 924 925 926 927 928 929
          const framework::TensorDesc &desc = var_desc->Tensor_desc();
          int numel = 1;
          for (auto l : desc.Dims()) {
              numel *= l;
          }
          DLOG<<var_desc->Name();
        float *tensorInput = static_cast<float *>(
                paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc,tensorInput,&data);

        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
930

Y
yangfei 已提交
931
        cl_image->Init(context, tensorInput, ddim);
Y
yangfei 已提交
932 933 934

          delete origin_data;
          paddle_mobile::memory::Free(tensorInput);
Y
yangfei 已提交
935
      }else{
Y
yangfei 已提交
936 937 938
          if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
              auto cl_image = var->template GetMutable<framework::CLImage>();
              cl_context context = program_.scope->GetCLScpoe()->Context();
Y
yangfei 已提交
939

Y
yangfei 已提交
940 941 942
              const framework::TensorDesc &desc = var_desc->Tensor_desc();
              framework::DDim ddim = framework::make_ddim(desc.Dims());
              DLOG<<var_desc->Name();
Y
yangfei 已提交
943

Y
yangfei 已提交
944 945 946
              cl_image->Init(context, ddim);

          }
Y
yangfei 已提交
947

Y
yangfei 已提交
948 949 950 951
      }
    }
  }
}
952

Y
yangfei 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
template <>
void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
  char *origin_data;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
    origin_data = (char *)program_.combined_params_buf;
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    origin_data = Get_binary_data(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
  float *data = (float *)origin_data;

  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto cl_image = var->template GetMutable<framework::CLImage>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

Y
yangfei 已提交
977
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
978
        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
979 980 981 982 983

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
Y
yangfei 已提交
984 985 986
          float *tensorInput = static_cast<float *>(
                  paddle_mobile::memory::Alloc(sizeof(float) * numel));
          LoadMemory(*var_desc,tensorInput,&origin_data);
Y
yangfei 已提交
987
        cl_image->Init(context, tensorInput, ddim);
Y
yangfei 已提交
988
          paddle_mobile::memory::Free(tensorInput);
Y
yangfei 已提交
989 990 991 992 993
      }else{
        auto cl_image = var->template GetMutable<framework::CLImage>();
        cl_context context = program_.scope->GetCLScpoe()->Context();

        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
994
        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
995 996

        cl_image->Init(context, ddim);
Y
yangfei 已提交
997 998 999 1000 1001
      }
    }
  }
  delete origin_data;
  LOG(kLOG_INFO) << " end init combine memory ";
1002
}
Y
yangfei 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

#endif

template class Executor<CPU, Precision::FP32>;

template class Executor<FPGA, Precision::FP32>;

template class Executor<GPU_CL, Precision::FP32>;

template class Executor<GPU_MALI, Precision::FP32>;

}  // namespace framework
W
wangliu 已提交
1015
}  // namespace paddle_mobile