executor.cpp 34.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
H
hjchen2 已提交
32
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
33 34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
36 37

namespace paddle_mobile {
38
namespace framework {
39

W
wangliu 已提交
40 41
#pragma mark - executor

42
template <typename Device, typename T>
43 44
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
45 46
}

47
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49 50 51
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
52
    : program_(program),
H
hjchen2 已提交
53 54
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
55 56
      lod_mode_(lod_mode),
      config_(config) {
57 58
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
59
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
60
  variable_ptr->SetValue<int>(batch_size);
61 62

  program_desc_ =
Refine  
陈后江 已提交
63
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
64 65
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
66 67
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
Y
Yanzhan Yang 已提交
68 69 70
  if (config_.enable_memory_optimization) {
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
  }
71
#endif
72 73 74 75
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
76 77 78 79 80 81 82 83
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
84
        op_desc->GetAttrMap(), program_.scope.get());
85 86 87 88
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
89
    }
90
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
91
  }
92 93 94
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
95
  if (program_.combined) {
L
liuruilong 已提交
96 97 98 99
    InitCombineMemory();
  } else {
    InitMemory();
  }
100
  int count = 0;
101 102 103
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
104
  }
W
wangliu 已提交
105 106
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

134
template <typename T>
135
static void LoadMemInternal(void **data, LoDTensor *tensor,
136
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
137
  char **data_buf = reinterpret_cast<char **>(data);
138
  int64_t size = tensor->numel();
139
  T *tensor_data = tensor->mutable_data<T>();
140 141
  if (quant_uint8) {
    // should be moved into operator init function
142 143
    float min_value;
    float max_value;
144 145 146
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
147
    const float factor = (max_value - min_value) / 255.0;
148
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
149 150
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
151
    }
152
    *data_buf += size * sizeof(uint8_t);
153
  } else {
154 155
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
156
  }
157
}
W
wangliu 已提交
158

159 160 161 162
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
163
  char **data_buf = reinterpret_cast<char **>(data);
164
  // version
165
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
166
  *data_buf += sizeof(uint32_t);
167
  // lod information
H
hjchen2 已提交
168 169
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
170
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
171
  *data_buf += sizeof(uint64_t);
172 173 174 175

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
176
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
177
    *data_buf += sizeof(uint64_t);
178
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
179
    memory::Copy(tmp_dim.data(), *data_buf, size);
180
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
181
    *data_buf += size;
W
wangliu 已提交
182
  }
183
  // tensor version
184
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
185
  *data_buf += sizeof(uint32_t);
186
  // tensor desc size
187
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
188
  *data_buf += sizeof(int32_t);
189
  // skip tensor desc
Refine  
陈后江 已提交
190
  *data_buf += tensor_desc_size;
191

192 193
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
194 195
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
196
    case VARTYPE_TYPE_FP32:
197 198
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
199
      break;
200
    case VARTYPE_TYPE_INT8:
201
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
202
      break;
203
    case VARTYPE_TYPE_INT32:
204
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
205 206
      break;
    default:
207
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
208
  }
W
wangliu 已提交
209 210
}

211 212 213
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
214 215 216 217
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
218
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
219 220
          continue;
        }
H
hjchen2 已提交
221
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
222
        char *origin_data =
Refine  
陈后江 已提交
223
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
224
        char *data = origin_data;
H
update  
hjchen2 已提交
225
        auto tensor = var->template GetMutable<LoDTensor>();
226 227
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
228
      } else {
229
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
230
        varInputMemory(var_desc, var);
W
wangliu 已提交
231 232 233 234 235
      }
    }
  }
}

236 237
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
238
  char *origin_data = nullptr;
Refine  
陈后江 已提交
239
  bool self_alloc = false;
240
  if (program_.combined_params_buf && program_.combined_params_len) {
241 242
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
243
  } else {
Refine  
陈后江 已提交
244
    self_alloc = true;
Refine  
陈后江 已提交
245
    origin_data = ReadFileToBuff(program_.para_path);
246
  }
Refine  
陈后江 已提交
247 248
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
249
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
250 251 252 253
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
254
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
255 256
          continue;
        }
L
liuruilong 已提交
257 258

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
259
        auto tensor = var->template GetMutable<LoDTensor>();
260
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
261
      } else {
H
update  
hjchen2 已提交
262 263
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
264 265 266
      }
    }
  }
Refine  
陈后江 已提交
267
  if (self_alloc) {
268
    delete[] origin_data;
Refine  
陈后江 已提交
269 270
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
271
}
272

C
Chon 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
287
template <typename Device, typename T>
L
liuruilong 已提交
288
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
289 290 291 292 293 294
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
295
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
296 297 298 299 300
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
301 302 303 304
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
305
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
306 307 308
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
309 310 311 312 313 314 315 316 317 318
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

319 320
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
321
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
322
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
323
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
324 325 326
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
327
  tensor->init(type_id<float>().hash_code());
328
#endif
329 330
  return true;
#endif
H
update  
hjchen2 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
344
  }
H
update  
hjchen2 已提交
345
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
346
}
L
liuruilong 已提交
347

348 349 350 351 352
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
353
  }
354 355 356 357 358 359 360 361
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
362
  }
363
  return this->Predict();
W
wangliu 已提交
364
}
xiebaiyuan's avatar
xiebaiyuan 已提交
365

366 367 368
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
369 370 371 372 373 374 375
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
376
  Tensor feed_tensor(input, make_ddim(dims));
377
  SetInput(feed_tensor, input_name);
378 379
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
380 381
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
382 383 384 385 386 387
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
388

389 390 391
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
392
  int index = 0;
393
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
394
    index = feed_indices_.find(var_name)->second;
395
  }
H
hjchen2 已提交
396 397 398 399 400 401
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
402
}
xiebaiyuan's avatar
xiebaiyuan 已提交
403

404 405 406
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
407
  int index = 0;
408
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
409
    index = feed_indices_.find(var_name)->second;
410
  }
H
hjchen2 已提交
411 412 413 414 415 416 417
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
418 419 420 421 422
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
423 424 425 426 427 428 429 430 431
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
432

433 434 435 436 437 438 439
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
440
}
xiebaiyuan's avatar
xiebaiyuan 已提交
441

442 443
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
444
#if _OPENMP
445
  omp_set_num_threads(CPUContext::Context()->get_thread_num());
446
#endif
447 448 449 450
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
451
#ifdef PADDLE_MOBILE_PROFILE
452
  std::vector<ProfInfo> profile(ops_of_block0_.size());
453 454
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
455
#endif
456
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
457
#ifdef PADDLE_MOBILE_PROFILE
458 459
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
460
#endif
H
hjchen2 已提交
461
    DLOG << "run op: " << op_handler->Type();
462 463 464 465
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
466
#ifdef PADDLE_MOBILE_PROFILE
467 468 469
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
470 471
#endif
  }
472 473 474 475 476 477 478

#ifdef PADDLE_MOBILE_PROFILE
  PrintProfile(profile);
#endif
  return PMSuccess;
}

xiebaiyuan's avatar
xiebaiyuan 已提交
479
#ifdef PADDLE_MOBILE_PROFILE
480 481 482
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
483 484 485 486
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
487 488 489 490 491 492
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
493
      int kernel_size = filter->dims()[2];
494 495
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
496
    } else {
497
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
498
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
499
  }
H
hjchen2 已提交
500
  printf("====================[ profile ]======================\n");
501
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
517
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
518
}
519
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

547
#ifdef PADDLE_MOBILE_FPGA
548 549 550 551
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
552
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
553 554
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
555
}
556

557 558
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
559
  InjectVariable(t, "feed0");
560
}
561

562
template <typename Device, typename T>
563
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
564
  auto input_size = v.size();
Z
zhangyang0701 已提交
565
  int index = 0;
566 567 568
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
569
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
570
    auto var = program_.scope->Var("feed", i + index);
571 572 573 574 575 576 577 578 579
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
580 581
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
582 583
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
584

585
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
586
    auto var = program_.scope->Var("fetch", i + index);
587 588
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
589
  }
590
}
591

592
template <typename Device, typename T>
593 594 595 596
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
597
}
598

599 600
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
601
  auto &ops = ops_of_block0_;
602

Z
zhangyang 已提交
603 604 605 606 607
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
608 609 610
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
611
}
612

613 614
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
615
  auto &ops = ops_of_block0_;
616
  end = end < 0 ? static_cast<int>(ops.size()) : end;
617 618 619 620 621 622 623 624 625 626 627 628
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
629
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
630 631 632 633 634 635 636
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
637
}
638

639 640
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
641
  Predict_From_To(start);
642
}
643

644 645
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
646
  Predict_From_To(0, end);
647
}
648 649 650 651 652 653
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
654 655
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
695 696 697 698 699 700
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
701 702 703 704 705 706 707 708
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
709 710 711 712 713 714
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
715 716 717 718 719 720
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
721
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
722 723
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
724
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
725 726 727 728 729 730 731
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
732
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
733 734 735 736
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
737
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
756

xiebaiyuan's avatar
xiebaiyuan 已提交
757 758 759
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
760 761 762 763 764 765 766
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
767 768 769 770 771

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
772
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
773
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
774
    if (input_dim_last_ != input.dims()) {
775 776 777
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
778 779 780 781 782 783 784 785
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
786 787
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
788 789
}

790 791 792
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
793

Y
yangfei 已提交
794
template <>
H
hjchen2 已提交
795 796
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

834
  const TensorDesc &desc = var_desc.Tensor_desc();
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
869

Y
yangfei 已提交
870
template <>
871 872
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
873 874 875
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
876
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
877
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
878
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
879
          continue;
L
liuruilong 已提交
880
        } else {
881
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
882
        }
L
liuruilong 已提交
883

Y
yangfei 已提交
884
        char *origin_data =
L
liuruilong 已提交
885
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
886
        char *data = origin_data;
Y
yangfei 已提交
887
        cl_context context = program_.scope->GetCLScpoe()->Context();
888
        const TensorDesc &desc = var_desc->Tensor_desc();
889 890 891 892 893
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
894
        float *tensorInput = static_cast<float *>(
895 896
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
897

898
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
899

L
liuruilong 已提交
900 901
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
902

903
        delete origin_data;
Y
yangfei 已提交
904
        paddle_mobile::memory::Free(tensorInput);
905
      } else {
906 907
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
908
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
909 910
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
911

912 913 914
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
915
          DLOG << var_desc->Name();
L
liuruilong 已提交
916
          cl_image->InitEmptyImage(context, command_queue, ddim);
917
        }
Y
yangfei 已提交
918 919 920 921
      }
    }
  }
}
922

Y
yangfei 已提交
923
template <>
924
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
925 926
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
927 928
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
929 930
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
931
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
932 933
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
934
    self_alloc = true;
L
liuruilong 已提交
935
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
936 937
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
938
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
939

940
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
941 942 943
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
944
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
945
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
946
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
947
          continue;
L
liuruilong 已提交
948
        } else {
949
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
950 951 952 953
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

954 955
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
956 957 958 959 960

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
961 962 963
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
964 965 966 967

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

968 969
        paddle_mobile::memory::Free(tensorInput);
      } else {
970
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
971
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
972 973
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
974 975
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
            if (ddim[i] != 0) {
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
993
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
994
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
995 996 997
      }
    }
  }
Y
yangfei 已提交
998
  if (self_alloc) {
999
    delete data;
Y
yangfei 已提交
1000
  }
Y
yangfei 已提交
1001
  LOG(kLOG_INFO) << " end init combine memory ";
1002
}
Y
yangfei 已提交
1003 1004 1005

#endif

1006
template class Executor<CPU, float>;
Y
yangfei 已提交
1007

1008
template class Executor<FPGA, float>;
W
wangliu 已提交
1009

1010
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1011

1012
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
1013 1014

}  // namespace framework
W
wangliu 已提交
1015
}  // namespace paddle_mobile