cl_image.h 9.1 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include <vector>

#include "CL/cl.h"
L
liuruilong 已提交
20

21
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
22
#include "framework/cl/cl_tool.h"
L
liuruilong 已提交
23
#include "framework/cl/cl_deleter.h"
L
liuruilong 已提交
24
#include "framework/cl/cl_engine.h"
L
liuruilong 已提交
25 26 27 28 29 30
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

L
liuruilong 已提交
31
enum ImageType { Invalid = -1, Normal = 0, Folder = 1 };
Y
yangfei 已提交
32

L
liuruilong 已提交
33 34
class CLImage {
 public:
L
liuruilong 已提交
35 36
  CLImage() = default;

L
liuruilong 已提交
37 38 39 40 41 42 43
  /*
   * will not hold input tensor data, memcpy in this method
   * */
  void SetTensorData(float *tensorData, const DDim &dim) {
    int numel = product(dim);
    if (tensor_data_ != nullptr) {
      delete[](tensor_data_);
L
liuruilong 已提交
44
      tensor_data_ = nullptr;
L
liuruilong 已提交
45 46
    }
    tensor_data_ = new float[numel];
L
liuruilong 已提交
47
    memcpy(tensor_data_, tensorData, numel * sizeof(float));
L
liuruilong 已提交
48 49 50 51 52
    tensor_dims_ = dim;
  }

  /*
   * need call SetTensorData first
L
liuruilong 已提交
53 54
   *
   * folder when one dim or two dim
L
liuruilong 已提交
55
   * */
L
liuruilong 已提交
56
  void InitCLImage(cl_context context, cl_command_queue command_queue) {
L
liuruilong 已提交
57 58 59
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
L
liuruilong 已提交
60
    DLOG << tensor_dims_;
D
dolphin8 已提交
61
    if (tensor_dims_.size() <= 2) {
L
liuruilong 已提交
62
      DLOG << " dim <= 2 folder ~~~~~ ";
L
liuruilong 已提交
63
      InitCLImage2C(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
64
    } else {
L
liuruilong 已提交
65
      DLOG << " dim >  2 norm ~~~~~ ";
L
liuruilong 已提交
66
      InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
67
    }
L
liuruilong 已提交
68 69 70 71 72
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

Y
yangfei 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
  /*
   * need call SetTensorData first
   * */
  void InitCLImageNormal(cl_context context, cl_command_queue command_queue) {
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
    InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

L
liuruilong 已提交
86 87
  void InitEmptyImage(cl_context context, cl_command_queue command_queue,
                      const DDim &dim) {
L
liuruilong 已提交
88 89 90 91
    if (tensor_data_ != nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " empty image tensor data shouldn't have value");
    }
L
liuruilong 已提交
92
    DLOG << " init empty image ";
L
liuruilong 已提交
93 94 95 96 97 98 99 100
    if (tensor_dims_.size() <= 2) {
      DLOG << " dim <= 2 folder ~~~~~ ";
      InitCLImage2C(context, command_queue, tensor_data_, tensor_dims_);
    } else {
      DLOG << " dim >  2 norm ~~~~~ ";
      InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
    }

L
liuruilong 已提交
101 102
    cl_event_ = CLEngine::Instance()->CreateEvent(context);

L
liuruilong 已提交
103 104

//    InitCLImage(context, command_queue, nullptr, dim);
L
liuruilong 已提交
105 106 107
    initialized_ = true;
  }

L
liuruilong 已提交
108
  cl_mem GetCLImage() const { return cl_image_.get(); }
L
liuruilong 已提交
109

Y
yangfei 已提交
110
  const DDim &ImageDims() const { return image_dims_; }
L
liuruilong 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

  inline size_t ImageWidth() const { return image_width_; }

  inline size_t ImageHeight() const { return image_height_; }

  /*
   * block of channels, 4 channel one block
   * */
  inline size_t CBlock() const { return c_block_; }

  /*
   *  width of original tensor
   * */
  inline size_t WidthOfOneBlock() const { return width_of_one_block_; }

  /*
   *  height of original tensor
   * */
  inline size_t HeightOfOneBlock() const { return height_of_one_block_; }

L
liuruilong 已提交
131
  inline cl_command_queue CommandQueue() const { return command_queue_; }
Y
yangfei 已提交
132

L
liuruilong 已提交
133 134 135 136 137 138 139 140 141 142 143 144
  /*
   *  resize original tensor dim
   * */
  inline CLImage &Resize(const DDim &dims) {
    tensor_dims_ = dims;
    return *this;
  }

  template <typename T>
  T *data() const {
    if (initialized_) {
      PADDLE_MOBILE_THROW_EXCEPTION(
L
liuruilong 已提交
145 146
          " cl image has initialized, tensor data has been deleted, can't use "
          "tensor data");
L
liuruilong 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
    }
    return reinterpret_cast<T *>(tensor_data_);
  }

  /*
   *  numel of tensor dim
   * */
  inline int64_t numel() const { return product(tensor_dims_); }

  /*
   *  original tensor dim
   * */
  const DDim &dims() const { return tensor_dims_; }

L
liuruilong 已提交
161
  const ImageType GetImageType() const { return image_type_; }
Y
yangfei 已提交
162

L
liuruilong 已提交
163 164
  cl_event GetClEvent() const { return cl_event_.get(); }

L
liuruilong 已提交
165
 private:
L
liuruilong 已提交
166
  ImageType image_type_ = Invalid;
L
liuruilong 已提交
167 168
  void InitCLImage2C(cl_context context, cl_command_queue command_queue,
                     float *tensor_data, const DDim &dim) {
L
liuruilong 已提交
169
    image_type_ = Folder;
Y
yangfei 已提交
170
    command_queue_ = command_queue;
D
dolphin8 已提交
171 172 173 174 175 176 177 178
    assert(dim.size() <= 2);
    int tdim[2] = {1, 1};
    if (dim.size() == 1) {
      tdim[1] = dim[0];
    } else {
      tdim[0] = dim[0];
      tdim[1] = dim[1];
    }
Y
yangfei 已提交
179
    int width = (tdim[1] + 3) / 4;
D
dolphin8 已提交
180
    int height = tdim[0];
Y
yangfei 已提交
181 182 183

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
184 185 186 187 188
    image_dims_ = make_ddim({width, height});
    width_of_one_block_ = width;
    height_of_one_block_ = height;
    c_block_ = 1;

D
dolphin8 已提交
189 190 191 192 193
    std::unique_ptr<half_t[]> imageData{};
    if (tensor_data) {
      imageData.reset(new half_t[width * height * 4]);
      for (int h = 0; h < tdim[0]; h++) {
        for (int w = 0; w < tdim[1]; w++) {
L
liuruilong 已提交
194 195
          imageData[(h * width + w / 4) * 4 + (w % 4)] =
              Float2Half(tensor_data[h * tdim[1] + w]);
D
dolphin8 已提交
196 197 198 199 200 201
        }
      }
    }
    InitCLImage(context, width, height, imageData.get());
  }

L
liuruilong 已提交
202
  void InitCLImage(cl_context context, int width, int height, void *data) {
D
dolphin8 已提交
203 204 205
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
    cl_image_desc cid = {
L
liuruilong 已提交
206 207 208 209 210 211 212 213 214 215
        .image_type = CL_MEM_OBJECT_IMAGE2D,
        .image_width = width,
        .image_height = height,
        .image_depth = 1,
        .image_array_size = 1,
        .image_row_pitch = 0,
        .image_slice_pitch = 0,
        .num_mip_levels = 0,
        .num_samples = 0,
        // .buffer = nullptr
D
dolphin8 已提交
216 217 218
    };
    cid.buffer = nullptr;
    cl_int err;
L
liuruilong 已提交
219
    cl_mem cl_image = clCreateImage(
L
liuruilong 已提交
220 221 222 223 224
        context, CL_MEM_READ_WRITE | (data ? CL_MEM_COPY_HOST_PTR : 0),
        &cf,   // const cl_image_format *image_format
        &cid,  // const cl_image_desc *image_desc
        data,  // void *host_ptr
        &err);
L
liuruilong 已提交
225
    cl_image_.reset(cl_image);
D
dolphin8 已提交
226 227 228 229 230
    if (err != CL_SUCCESS) {
      CL_CHECK_ERRORS(err);
      PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error ");
    }
  }
L
liuruilong 已提交
231 232
  void InitCLImage(cl_context context, cl_command_queue command_queue,
                   float *tensor_data, const DDim &dim) {
L
liuruilong 已提交
233
    image_type_ = Normal;
L
liuruilong 已提交
234
    DLOG << " tensor dim: " << dim;
D
dolphin8 已提交
235
    // NCHW -> [W * (C+3)/4, H * N]
Y
yangfei 已提交
236
    tensor_dims_ = dim;
Y
yangfei 已提交
237
    command_queue_ = command_queue;
Y
yangfei 已提交
238 239 240
    if (tensor_data) {
      tensor_data_ = tensor_data;
    }
L
liuruilong 已提交
241
    size_t new_dims[] = {1, 1, 1, 1};
L
liuruilong 已提交
242

L
liuruilong 已提交
243 244
    for (int j = 0; j < dim.size(); ++j) {
      new_dims[4 - dim.size() + j] = dim[j];
Y
yangfei 已提交
245 246
    }

L
liuruilong 已提交
247 248 249 250 251 252 253 254 255 256
    size_t N, C, H, W;

    N = new_dims[0];
    C = new_dims[1];
    H = new_dims[2];
    W = new_dims[3];

    width_of_one_block_ = W;
    height_of_one_block_ = H;

D
dolphin8 已提交
257 258
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
L
liuruilong 已提交
259 260 261

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
262
    image_dims_ = make_ddim({image_width_, image_height_});
Y
yangfei 已提交
263
    c_block_ = width / W;
L
liuruilong 已提交
264

L
liuruilong 已提交
265 266 267 268
    DLOG << " tensor dim " << tensor_dims_;
    DLOG << " 赋值时: image width: " << image_width_;
    DLOG << " 赋值时: image height: " << image_height_;

D
dolphin8 已提交
269
    std::unique_ptr<half_t[]> imageData{};
270
    int count = 0;
L
liuruilong 已提交
271
    if (tensor_data != nullptr) {
D
dolphin8 已提交
272
      imageData.reset(new half_t[width * height * 4]);
L
liuruilong 已提交
273
      float *p = tensor_data;
274 275
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
L
liuruilong 已提交
276
        for (int c = 0; c < c_block_ * 4; c++) {
D
dolphin8 已提交
277
          size_t i1 = i0 + (c / 4) * W;
278 279 280
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
L
liuruilong 已提交
281 282 283 284 285 286 287 288 289 290
              if (c < C) {
                // int x = (n * width * H + h * width + (c / 4) * W + w) * 4 +
                // (c % 4);
                imageData[i2] = Float2Half(*p);
                i2 += 4;
                p++;
              } else {
                imageData[i2] = 0.0;
                i2 += 4;
              }
291 292 293 294 295 296
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
297
    }
D
dolphin8 已提交
298
    InitCLImage(context, width, height, imageData.get());
L
liuruilong 已提交
299 300
  }

L
liuruilong 已提交
301
  bool initialized_ = false;
L
liuruilong 已提交
302
  std::unique_ptr<_cl_mem, CLMemDeleter> cl_image_;
L
liuruilong 已提交
303
  std::unique_ptr<_cl_event, CLEventDeleter> cl_event_;
L
liuruilong 已提交
304 305 306 307 308
  size_t image_width_;
  size_t width_of_one_block_;
  size_t height_of_one_block_;
  size_t image_height_;
  size_t c_block_;
309
  DDim tensor_dims_;
L
liuruilong 已提交
310
  DDim image_dims_;
L
liuruilong 已提交
311
  float *tensor_data_ = nullptr;
L
liuruilong 已提交
312
  cl_context context_;
Y
yangfei 已提交
313
  cl_command_queue command_queue_;
L
liuruilong 已提交
314 315
};

L
liuruilong 已提交
316 317
void TensorToCLImage(Tensor *tensor, CLImage *image,
                     cl_command_queue commandQueue);
Y
yangfei 已提交
318

L
liuruilong 已提交
319 320
void CLImageToTensor(CLImage *image, Tensor *tensor,
                     cl_command_queue commandQueue);
L
liuruilong 已提交
321

L
liuruilong 已提交
322 323 324 325
#ifdef PADDLE_MOBILE_DEBUG
Print &operator<<(Print &printer, const CLImage &image);
#endif

326 327
}  // namespace framework
}  // namespace paddle_mobile