cl_image.h 6.2 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include <vector>

#include "CL/cl.h"
L
liuruilong 已提交
20

21
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
22
#include "framework/cl/cl_tool.h"
L
liuruilong 已提交
23 24 25 26 27 28 29 30
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

class CLImage {
 public:
L
liuruilong 已提交
31 32
  CLImage() = default;

L
liuruilong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  /*
   * will not hold input tensor data, memcpy in this method
   * */
  void SetTensorData(float *tensorData, const DDim &dim) {
    int numel = product(dim);
    if (tensor_data_ != nullptr) {
      delete[](tensor_data_);
    }
    tensor_data_ = new float[numel];
    memcpy(tensor_data_, tensorData, numel);
    tensor_dims_ = dim;
  }

  /*
   * need call SetTensorData first
   * */
  void InitCLImage(cl_context context) {
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
    InitCLImage(context, tensor_data_, tensor_dims_);
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

  void InitEmptyImage(cl_context context, const DDim &dim) {
    if (tensor_data_ != nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " empty image tensor data shouldn't have value");
    }
L
liuruilong 已提交
64
    DLOG << " init empty image ";
L
liuruilong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    InitCLImage(context, nullptr, dim);
    initialized_ = true;
  }

  cl_mem GetCLImage() const { return cl_image_; }

  const DDim &ImageDims() { return image_dims_; }

  inline size_t ImageWidth() const { return image_width_; }

  inline size_t ImageHeight() const { return image_height_; }

  /*
   * block of channels, 4 channel one block
   * */
  inline size_t CBlock() const { return c_block_; }

  /*
   *  width of original tensor
   * */
  inline size_t WidthOfOneBlock() const { return width_of_one_block_; }

  /*
   *  height of original tensor
   * */
  inline size_t HeightOfOneBlock() const { return height_of_one_block_; }

  /*
   *  resize original tensor dim
   * */
  inline CLImage &Resize(const DDim &dims) {
    tensor_dims_ = dims;
    return *this;
  }

  template <typename T>
  T *data() const {
    if (initialized_) {
      PADDLE_MOBILE_THROW_EXCEPTION(
L
liuruilong 已提交
104 105
          " cl image has initialized, tensor data has been deleted, can't use "
          "tensor data");
L
liuruilong 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    }
    return reinterpret_cast<T *>(tensor_data_);
  }

  /*
   *  numel of tensor dim
   * */
  inline int64_t numel() const { return product(tensor_dims_); }

  /*
   *  original tensor dim
   * */
  const DDim &dims() const { return tensor_dims_; }

 private:
  void InitCLImage(cl_context context, float *tensor_data, const DDim &dim) {
L
liuruilong 已提交
122
    DLOG << " tensor dim: " << dim;
D
dolphin8 已提交
123
    // NCHW -> [W * (C+3)/4, H * N]
Y
yangfei 已提交
124 125 126 127
    tensor_dims_ = dim;
    if (tensor_data) {
      tensor_data_ = tensor_data;
    }
L
liuruilong 已提交
128
    size_t new_dims[] = {1, 1, 1, 1};
L
liuruilong 已提交
129

L
liuruilong 已提交
130 131
    for (int j = 0; j < dim.size(); ++j) {
      new_dims[4 - dim.size() + j] = dim[j];
Y
yangfei 已提交
132 133
    }

L
liuruilong 已提交
134 135 136 137 138 139 140 141 142 143
    size_t N, C, H, W;

    N = new_dims[0];
    C = new_dims[1];
    H = new_dims[2];
    W = new_dims[3];

    width_of_one_block_ = W;
    height_of_one_block_ = H;

D
dolphin8 已提交
144 145
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
L
liuruilong 已提交
146 147 148

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
149
    image_dims_ = make_ddim({image_width_, image_height_});
L
liuruilong 已提交
150

D
dolphin8 已提交
151
    std::unique_ptr<half_t[]> imageData{};
152
    int count = 0;
L
liuruilong 已提交
153
    if (tensor_data != nullptr) {
D
dolphin8 已提交
154
      imageData.reset(new half_t[width * height * 4]);
L
liuruilong 已提交
155
      float *p = tensor_data;
156 157 158 159 160 161 162 163 164 165 166 167 168
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
        for (int c = 0; c < C; c++) {
          size_t i1 = i0;
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
              if (i2 >= width * height * 4) {
                printf("%d > %d ----> %d, %d, %d, %d --- %d, %d, %d\n", i2,
                       width * height * 4, n, c, h, w, i0, i1, i2);
              }
              assert(i2 < width * height * 4);

L
liuruilong 已提交
169
              imageData[i2] = Float2Half(*p);
170 171 172 173 174 175 176 177 178 179
              i2 += 4;
              p++;
              //              count++;
              //              DLOG<<count;
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
180 181
    }
    cl_int err;
L
liuruilong 已提交
182 183
    DLOG << " image width: " << width;
    DLOG << " image height: " << height;
D
dolphin8 已提交
184

L
liuruilong 已提交
185 186
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
D
dolphin8 已提交
187
    cl_image_desc cid = {
L
liuruilong 已提交
188 189 190 191 192 193 194 195 196 197
        .image_type = CL_MEM_OBJECT_IMAGE2D,
        .image_width = width,
        .image_height = height,
        .image_depth = 1,
        .image_array_size = 1,
        .image_row_pitch = 0,
        .image_slice_pitch = 0,
        .num_mip_levels = 0,
        .num_samples = 0,
        // .buffer = nullptr
D
dolphin8 已提交
198 199 200
    };
    cid.buffer = nullptr;
    cl_image_ = clCreateImage(
L
liuruilong 已提交
201 202 203
        context, CL_MEM_READ_WRITE | (imageData ? CL_MEM_COPY_HOST_PTR : 0),
        &cf,   // const cl_image_format *image_format
        &cid,  // const cl_image_desc *image_desc
204 205
        reinterpret_cast<void *>(imageData.get()),  // void *host_ptr
        &err);
L
liuruilong 已提交
206

D
dolphin8 已提交
207
    if (err != CL_SUCCESS) {
L
liuruilong 已提交
208
      CL_CHECK_ERRORS(err);
L
liuruilong 已提交
209
      PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error ");
D
dolphin8 已提交
210
    }
L
liuruilong 已提交
211 212
  }

L
liuruilong 已提交
213
  bool initialized_ = false;
L
liuruilong 已提交
214
  cl_mem cl_image_;
L
liuruilong 已提交
215 216 217 218 219
  size_t image_width_;
  size_t width_of_one_block_;
  size_t height_of_one_block_;
  size_t image_height_;
  size_t c_block_;
220
  DDim tensor_dims_;
L
liuruilong 已提交
221 222
  DDim image_dims_;
  float *tensor_data_;
L
liuruilong 已提交
223 224 225
  cl_context context_;
};

L
liuruilong 已提交
226 227
void TensorToCLImage(Tensor *tensor, CLImage *image,
                     cl_command_queue commandQueue);
Y
yangfei 已提交
228

L
liuruilong 已提交
229 230
void CLImageToTensor(CLImage *image, Tensor *tensor,
                     cl_command_queue commandQueue);
L
liuruilong 已提交
231

L
liuruilong 已提交
232 233 234 235
#ifdef PADDLE_MOBILE_DEBUG
Print &operator<<(Print &printer, const CLImage &image);
#endif

236 237
}  // namespace framework
}  // namespace paddle_mobile