Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c943bd4e
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c943bd4e
编写于
10月 17, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update conv kernel update cl image
上级
6965d2b2
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
1042 addition
and
29 deletion
+1042
-29
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+12
-2
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+23
-10
src/framework/executor.cpp
src/framework/executor.cpp
+3
-3
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
+337
-1
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
+337
-1
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
+320
-1
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+1
-4
src/operators/kernel/cl/elementwise_add_kernel.cpp
src/operators/kernel/cl/elementwise_add_kernel.cpp
+2
-1
src/operators/kernel/cl/fetch_kernel.cpp
src/operators/kernel/cl/fetch_kernel.cpp
+1
-1
src/operators/kernel/cl/relu_kernel.cpp
src/operators/kernel/cl/relu_kernel.cpp
+5
-4
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+1
-1
未找到文件。
src/framework/cl/cl_image.cpp
浏览文件 @
c943bd4e
...
...
@@ -125,7 +125,8 @@ Print &operator<<(Print &printer, const CLImage &cl_image) {
float
*
data
=
new
float
[
cl_image
.
numel
()];
DDim
ddim
=
cl_image
.
dims
();
size_t
N
,
C
,
H
,
W
,
width
,
height
;
if
(
cl_image
.
GetImageType
()
==
0
||
ddim
.
size
()
==
4
)
{
if
(
cl_image
.
GetImageType
()
==
Normal
||
cl_image
.
dims
().
size
()
==
3
||
cl_image
.
dims
().
size
()
==
4
)
{
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
if
(
N
<
0
)
{
...
...
@@ -159,6 +160,12 @@ Print &operator<<(Print &printer, const CLImage &cl_image) {
size_t
region
[
3
]
=
{
width
,
height
,
1
};
err
=
clEnqueueReadImage
(
cl_image
.
CommandQueue
(),
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
if
(
err
!=
CL_SUCCESS
)
{
printf
(
"ImageWidth %ld
\n
"
,
cl_image
.
ImageWidth
());
printf
(
"ImageWidth %ld
\n
"
,
cl_image
.
ImageHeight
());
}
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
...
...
@@ -177,6 +184,9 @@ Print &operator<<(Print &printer, const CLImage &cl_image) {
}
delete
(
imageData
);
CL_CHECK_ERRORS
(
err
);
}
else
{
if
(
ddim
.
size
()
==
2
)
{
width
=
(
ddim
[
1
]
+
3
)
/
4
;
...
...
@@ -210,7 +220,7 @@ Print &operator<<(Print &printer, const CLImage &cl_image) {
for
(
int
i
=
0
;
i
<
cl_image
.
numel
();
i
+=
stride
)
{
printer
<<
data
[
i
]
<<
" "
;
}
delete
(
data
);
delete
(
data
);
return
printer
;
}
#endif
...
...
src/framework/cl/cl_image.h
浏览文件 @
c943bd4e
...
...
@@ -26,7 +26,11 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
framework
{
enum
ImageType
{
Normal
=
0
,
Folder
=
1
};
enum
ImageType
{
Invalid
=
-
1
,
Normal
=
0
,
Folder
=
1
};
class
CLImage
{
public:
...
...
@@ -47,14 +51,19 @@ class CLImage {
/*
* need call SetTensorData first
*
* folder when one dim or two dim
* */
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
)
{
if
(
tensor_data_
==
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" need call SetTensorData first"
);
}
DLOG
<<
tensor_dims_
;
if
(
tensor_dims_
.
size
()
<=
2
)
{
DLOG
<<
" dim <= 2 folder ~~~~~ "
;
InitCLImage2C
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
else
{
DLOG
<<
" dim > 2 norm ~~~~~ "
;
InitCLImage
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
delete
[](
tensor_data_
);
...
...
@@ -139,13 +148,13 @@ class CLImage {
* */
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
const
ImageType
GetImageType
()
const
{
return
type
;
}
const
ImageType
GetImageType
()
const
{
return
image_type_
;
}
private:
ImageType
type
;
ImageType
image_type_
=
Invalid
;
void
InitCLImage2C
(
cl_context
context
,
cl_command_queue
command_queue
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
type
=
Folder
;
image_type_
=
Folder
;
command_queue_
=
command_queue
;
assert
(
dim
.
size
()
<=
2
);
int
tdim
[
2
]
=
{
1
,
1
};
...
...
@@ -158,13 +167,13 @@ class CLImage {
int
width
=
(
tdim
[
1
]
+
3
)
/
4
;
int
height
=
tdim
[
0
];
width_of_one_block_
=
tdim
[
1
];
height_of_one_block_
=
tdim
[
0
];
image_width_
=
width
;
image_height_
=
height
;
image_dims_
=
make_ddim
({
image_width_
,
image_height_
});
c_block_
=
tdim
[
1
]
/
width
;
image_dims_
=
make_ddim
({
width
,
height
});
width_of_one_block_
=
width
;
height_of_one_block_
=
height
;
c_block_
=
1
;
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
if
(
tensor_data
)
{
imageData
.
reset
(
new
half_t
[
width
*
height
*
4
]);
...
...
@@ -208,7 +217,7 @@ class CLImage {
}
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
type
=
Normal
;
image_type_
=
Normal
;
DLOG
<<
" tensor dim: "
<<
dim
;
// NCHW -> [W * (C+3)/4, H * N]
tensor_dims_
=
dim
;
...
...
@@ -240,6 +249,10 @@ class CLImage {
image_dims_
=
make_ddim
({
image_width_
,
image_height_
});
c_block_
=
W
/
width
;
DLOG
<<
" tensor dim "
<<
tensor_dims_
;
DLOG
<<
" 赋值时: image width: "
<<
image_width_
;
DLOG
<<
" 赋值时: image height: "
<<
image_height_
;
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
int
count
=
0
;
if
(
tensor_data
!=
nullptr
)
{
...
...
src/framework/executor.cpp
浏览文件 @
c943bd4e
...
...
@@ -37,7 +37,7 @@ limitations under the License. */
#include "framework/cl/cl_image.h"
#endif
int
debug_to
=
115
;
int
debug_to
=
3
;
namespace
paddle_mobile
{
namespace
framework
{
...
...
@@ -87,7 +87,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
()
;
++
j
)
{
for
(
int
j
=
0
;
j
<
debug_to
;
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
...
...
@@ -416,7 +416,7 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
}
}
#else
for
(
int
i
=
0
;
i
<
ops
.
size
()
;
i
++
)
{
for
(
int
i
=
0
;
i
<
debug_to
;
i
++
)
{
#ifdef PADDLE_MOBILE_PROFILE
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
...
...
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
浏览文件 @
c943bd4e
...
...
@@ -17,4 +17,340 @@ limitations under the License. */
#
define
BATCH_NORM
#
define
RELU
#
include
"cl_kernel/conv_kernel.inc.cl"
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
inline
half4
activation
(
half4
in
#
ifdef
PRELU
,
half4
prelu_alpha
#
endif
)
{
half4
output
;
#
ifdef
PRELU
output
=
select
(
prelu_alpha
*
in,
in,
in
>=
(
half4
)
0.0
)
;
#
endif
#
ifdef
RELU
output
=
fmax
(
in,
(
half4
)(
0.0f
))
;
#
endif
return
output
;
}
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
#
ifdef
BATCH_NORM
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_biase,
#
endif
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int2
stride_xy
;
stride_xy.x
=
stride
;
stride_xy.y
=
stride
;
int2
ouput_pos_in_one_block
;
ouput_pos_in_one_block.x
=
out_w
;
ouput_pos_in_one_block.y
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
in_pos_in_one_block
;
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
(
int2
)(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
(
half4
)(
0.0f
)
,
(
ushort4
)(
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
浏览文件 @
c943bd4e
...
...
@@ -15,4 +15,340 @@ limitations under the License. */
#
define
BIASE
#
include
"cl_kernel/conv_kernel.inc.cl"
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
inline
half4
activation
(
half4
in
#
ifdef
PRELU
,
half4
prelu_alpha
#
endif
)
{
half4
output
;
#
ifdef
PRELU
output
=
select
(
prelu_alpha
*
in,
in,
in
>=
(
half4
)
0.0
)
;
#
endif
#
ifdef
RELU
output
=
fmax
(
in,
(
half4
)(
0.0f
))
;
#
endif
return
output
;
}
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
#
ifdef
BATCH_NORM
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_biase,
#
endif
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int2
stride_xy
;
stride_xy.x
=
stride
;
stride_xy.y
=
stride
;
int2
ouput_pos_in_one_block
;
ouput_pos_in_one_block.x
=
out_w
;
ouput_pos_in_one_block.y
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
in_pos_in_one_block
;
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
(
int2
)(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
(
half4
)(
0.0f
)
,
(
ushort4
)(
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
浏览文件 @
c943bd4e
...
...
@@ -12,4 +12,323 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
"cl_kernel/conv_kernel.inc.cl"
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
#
ifdef
BATCH_NORM
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_biase,
#
endif
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int2
stride_xy
;
stride_xy.x
=
stride
;
stride_xy.y
=
stride
;
int2
ouput_pos_in_one_block
;
ouput_pos_in_one_block.x
=
out_w
;
ouput_pos_in_one_block.y
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
in_pos_in_one_block
;
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
(
int2
)(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
(
half4
)(
0.0f
)
,
(
ushort4
)(
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
c943bd4e
...
...
@@ -50,7 +50,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
...
...
@@ -72,7 +71,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
#
ifdef
BIASE
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
...
...
@@ -80,8 +79,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
...
...
src/operators/kernel/cl/elementwise_add_kernel.cpp
浏览文件 @
c943bd4e
...
...
@@ -22,12 +22,13 @@ namespace operators {
template
<
>
bool
ElementwiseAddKernel
<
GPU_CL
,
float
>::
Init
(
ElementwiseAddParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"-----init add-----"
;
CLImage
*
bias
=
(
CLImage
*
)
param
->
InputY
();
bias
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
DLOG
<<
" bias: "
<<
*
bias
;
if
(
bias
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"elementwise_add"
,
"elementwise_add_kernel.cl"
);
}
else
if
(
param
->
InputY
()
->
dims
().
size
()
==
1
)
{
DLOG
<<
"-----init add-----"
;
this
->
cl_helper_
.
AddKernel
(
"channel_add"
,
"channel_add_kernel.cl"
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
...
...
src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
c943bd4e
...
...
@@ -58,7 +58,7 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
memcpy
(
out
->
data
(),
out_cl_tensor
.
Data
(),
out
->
memory_size
());
memcpy
(
out
->
data
<
float
>
(),
out_cl_tensor
.
Data
<
float
>
(),
out
->
memory_size
());
}
template
class
FetchKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/relu_kernel.cpp
浏览文件 @
c943bd4e
...
...
@@ -43,10 +43,11 @@ void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL>& param) {
clSetKernelArg
(
kernel_p1
,
0
,
sizeof
(
cl_mem
),
&
tImage
);
clSetKernelArg
(
kernel_p1
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel_p0
,
3
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel_p1
,
3
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel_p0, 3, NULL,
// work_size, NULL, 0, NULL, NULL);
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel_p1, 3, NULL,
// work_size, NULL, 0, NULL, NULL);
}
template
class
ReluKernel
<
GPU_CL
,
float
>;
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
c943bd4e
...
...
@@ -23,7 +23,7 @@ int main() {
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
fals
e
);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
tru
e
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time1
)
<<
"ms"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录