test_batchnorm_op.cpp 6.5 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15
#include "../test_helper.h"
E
eclipsess 已提交
16 17 18 19 20 21
#include "../test_include.h"
#include "operators/batchnorm_op.h"

namespace paddle_mobile {
namespace framework {

22 23 24
template <typename Dtype>
class TestBatchNormOp {
 public:
25 26 27 28 29
  explicit TestBatchNormOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
E
eclipsess 已提交
30 31
    }

32 33 34 35 36 37 38 39 40 41
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "batch_norm" &&
L
liuruilong 已提交
42
            op->Input("X")[0] == "conv2d_5.tmp_0") {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
          DLOG << " mul attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Input Mean is : " << op->Input("Mean")[0];
          DLOG << " Input Variance is : " << op->Input("Variance")[0];
          DLOG << " Input Scale is : " << op->Input("Scale")[0];
          DLOG << " Input Bias is : " << op->Input("Bias")[0];
          DLOG << " Output Y is : " << op->Output("Y")[0];
          DLOG << " epsilon : " << op->GetAttrMap().at("epsilon").Get<float>();
          std::shared_ptr<operators::BatchNormOp<Dtype, float>> lrn =
              std::make_shared<operators::BatchNormOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(lrn);
E
eclipsess 已提交
58
        }
59 60 61 62
      }
    }
  }

63 64 65
  std::shared_ptr<Tensor> predict_bn(const Tensor &t1, const Tensor &t2,
                                     const Tensor &t3, const Tensor &t4,
                                     const Tensor &t5) {
66 67
    // feed
    auto scope = program_.scope;
L
liuruilong 已提交
68
    Variable *x1_feed_value = scope->Var("conv2d_5.tmp_0");
E
eclipsess 已提交
69
    auto tensor_x1 = x1_feed_value->GetMutable<LoDTensor>();
70 71
    tensor_x1->ShareDataWith(t1);

L
liuruilong 已提交
72
    Variable *mean_feed_value = scope->Var("batch_norm_10.w_1");
E
eclipsess 已提交
73
    auto tensor_mean = mean_feed_value->GetMutable<LoDTensor>();
74 75
    tensor_mean->ShareDataWith(t2);

L
liuruilong 已提交
76
    Variable *scale_feed_value = scope->Var("batch_norm_10.w_0");
E
eclipsess 已提交
77
    auto tensor_scale = scale_feed_value->GetMutable<LoDTensor>();
78 79
    tensor_scale->ShareDataWith(t3);

L
liuruilong 已提交
80
    Variable *variance_feed_value = scope->Var("batch_norm_10.w_2");
E
eclipsess 已提交
81
    auto tensor_variance = variance_feed_value->GetMutable<LoDTensor>();
82 83
    tensor_variance->ShareDataWith(t4);

L
liuruilong 已提交
84
    Variable *bias_feed_value = scope->Var("batch_norm_10.b_0");
E
eclipsess 已提交
85
    auto tensor_bias = bias_feed_value->GetMutable<LoDTensor>();
86 87
    tensor_bias->ShareDataWith(t5);

L
liuruilong 已提交
88
    Variable *output = scope->Var("batch_norm_10.tmp_2");
E
eclipsess 已提交
89
    auto *output_tensor = output->GetMutable<LoDTensor>();
L
liuruilong 已提交
90
    output_tensor->mutable_data<float>({1, 256, 38, 38});
91 92 93 94 95 96 97 98 99 100
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict_bn(t1, t2, t3, t4, t5, 0);
    return out_tensor;
  }

101
 private:
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict_bn(const Tensor &t1, const Tensor &t2, const Tensor &t3,
                  const Tensor &t4, const Tensor &t5, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
E
eclipsess 已提交
117
    }
118
  }
E
eclipsess 已提交
119 120 121
};

template class TestBatchNormOp<CPU>;
122 123
}  // namespace framework
}  // namespace paddle_mobile
E
eclipsess 已提交
124 125

int main() {
126 127 128
  DLOG << "----------**********----------";
  DLOG << "begin to run BatchNormOp Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
L
liuruilong 已提交
129
  auto program = loader.Load(std::string(g_mobilenet_ssd));
130 131 132

  /// input x (4,10,2,2)
  paddle_mobile::framework::Tensor inputx1;
L
liuruilong 已提交
133
  SetupTensor<float>(&inputx1, {1, 256, 38, 38}, static_cast<float>(0),
134 135 136 137
                     static_cast<float>(1));
  auto *inputx1_ptr = inputx1.data<float>();

  paddle_mobile::framework::Tensor mean;
L
liuruilong 已提交
138 139
  SetupTensor<float>(&mean, {256}, static_cast<float>(0),
                     static_cast<float>(1));
140 141 142
  auto *mean_ptr = mean.data<float>();

  paddle_mobile::framework::Tensor scale;
L
liuruilong 已提交
143
  SetupTensor<float>(&scale, {256}, static_cast<float>(0),
144 145 146 147
                     static_cast<float>(1));
  auto *scale_ptr = scale.data<float>();

  paddle_mobile::framework::Tensor variance;
L
liuruilong 已提交
148
  SetupTensor<float>(&variance, {256}, static_cast<float>(0),
149 150 151 152
                     static_cast<float>(1));
  auto *variance_ptr = variance.data<float>();

  paddle_mobile::framework::Tensor bias;
L
liuruilong 已提交
153 154
  SetupTensor<float>(&bias, {256}, static_cast<float>(0),
                     static_cast<float>(1));
155 156 157 158 159 160 161 162 163
  auto *bias_ptr = bias.data<float>();

  paddle_mobile::framework::TestBatchNormOp<paddle_mobile::CPU> testBatchNormOp(
      program);

  auto output_bn =
      testBatchNormOp.predict_bn(inputx1, mean, scale, variance, bias);
  auto *output_bn_ptr = output_bn->data<float>();

L
liuruilong 已提交
164 165 166 167 168 169 170
  DLOG << " (" << inputx1_ptr[0] << " - " << mean_ptr[0] << ")/(("
       << variance_ptr[0] << " + 0.00001"
       << ")^0.5)* " << scale_ptr[0] << " + " << bias_ptr[0] << " = ";
  DLOG << output_bn_ptr[0];

  DLOG << "input_ptr 0 : " << inputx1_ptr[0];
  DLOG << "output_ptr 0 : " << output_bn_ptr[0];
171 172

  return 0;
E
eclipsess 已提交
173
}