test_batchnorm_op.cpp 6.3 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

E
eclipsess 已提交
15 16 17 18 19 20 21 22
#pragma once
#include "../test_include.h"
#include "operators/batchnorm_op.h"

namespace paddle_mobile {
namespace framework {

template <typename Dtype> class TestBatchNormOp {
23 24 25 26 27 28
public:
  explicit TestBatchNormOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
E
eclipsess 已提交
29 30
    }

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "batch_norm" &&
            op->Input("X")[0] == "conv2d_0.tmp_0") {
          DLOG << " mul attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Input Mean is : " << op->Input("Mean")[0];
          DLOG << " Input Variance is : " << op->Input("Variance")[0];
          DLOG << " Input Scale is : " << op->Input("Scale")[0];
          DLOG << " Input Bias is : " << op->Input("Bias")[0];
          DLOG << " Output Y is : " << op->Output("Y")[0];
          DLOG << " epsilon : " << op->GetAttrMap().at("epsilon").Get<float>();
          std::shared_ptr<operators::BatchNormOp<Dtype, float>> lrn =
              std::make_shared<operators::BatchNormOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(lrn);
E
eclipsess 已提交
57
        }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
      }
    }
  }

  std::shared_ptr<Tensor> predict_bn(Tensor &t1, Tensor &t2, Tensor &t3,
                                     Tensor &t4, Tensor &t5) {
    // feed
    auto scope = program_.scope;
    Variable *x1_feed_value = scope->Var("conv2d_0.tmp_0");
    auto tensor_x1 = x1_feed_value->GetMutable<Tensor>();
    tensor_x1->ShareDataWith(t1);

    Variable *mean_feed_value = scope->Var("batch_norm_0.w_1");
    auto tensor_mean = mean_feed_value->GetMutable<Tensor>();
    tensor_mean->ShareDataWith(t2);

    Variable *scale_feed_value = scope->Var("batch_norm_0.w_0");
    auto tensor_scale = scale_feed_value->GetMutable<Tensor>();
    tensor_scale->ShareDataWith(t3);

    Variable *variance_feed_value = scope->Var("batch_norm_0.w_2");
    auto tensor_variance = variance_feed_value->GetMutable<Tensor>();
    tensor_variance->ShareDataWith(t4);

    Variable *bias_feed_value = scope->Var("batch_norm_0.b_0");
    auto tensor_bias = bias_feed_value->GetMutable<Tensor>();
    tensor_bias->ShareDataWith(t5);

    Variable *output = scope->Var("batch_norm_0.tmp_2");
    auto *output_tensor = output->GetMutable<Tensor>();
    output_tensor->mutable_data<float>({4, 10, 2, 2});
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict_bn(t1, t2, t3, t4, t5, 0);
    return out_tensor;
  }

private:
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict_bn(const Tensor &t1, const Tensor &t2, const Tensor &t3,
                  const Tensor &t4, const Tensor &t5, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
E
eclipsess 已提交
115
    }
116
  }
E
eclipsess 已提交
117 118 119 120 121 122 123
};

template class TestBatchNormOp<CPU>;
} // namespace framework
} // namespace paddle_mobile

int main() {
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  DLOG << "----------**********----------";
  DLOG << "begin to run BatchNormOp Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  auto program = loader.Load(std::string(
      "../../test/models/image_classification_resnet.inference.model"));

  /// input x (4,10,2,2)
  paddle_mobile::framework::Tensor inputx1;
  SetupTensor<float>(&inputx1, {4, 10, 2, 2}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx1_ptr = inputx1.data<float>();

  paddle_mobile::framework::Tensor mean;
  SetupTensor<float>(&mean, {10}, static_cast<float>(0), static_cast<float>(1));
  auto *mean_ptr = mean.data<float>();

  paddle_mobile::framework::Tensor scale;
  SetupTensor<float>(&scale, {10}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *scale_ptr = scale.data<float>();

  paddle_mobile::framework::Tensor variance;
  SetupTensor<float>(&variance, {10}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *variance_ptr = variance.data<float>();

  paddle_mobile::framework::Tensor bias;
  SetupTensor<float>(&bias, {10}, static_cast<float>(0), static_cast<float>(1));
  auto *bias_ptr = bias.data<float>();

  paddle_mobile::framework::TestBatchNormOp<paddle_mobile::CPU> testBatchNormOp(
      program);

  auto output_bn =
      testBatchNormOp.predict_bn(inputx1, mean, scale, variance, bias);
  auto *output_bn_ptr = output_bn->data<float>();

  /// [2, 5, 1, 0]
  DLOG << " (" << inputx1_ptr[102] << " - " << mean_ptr[5] << ")/(("
       << variance_ptr[5] << " + 0.00001"
       << ")^0.5)* " << scale_ptr[5] << " + " << bias_ptr[5] << " = ";
  DLOG << output_bn_ptr[102];

  return 0;
E
eclipsess 已提交
168
}