calib_compute.cu 5.3 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/cuda/calib_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

__device__ __forceinline__ int8_t float2int8(float x) {
  x = fmaxf(x, INT8_MIN);
  x = fminf(x, INT8_MAX);
  return __float2int_rn(x);
}

__global__ void Fp32ToInt8Kernel(const int num,
                                 const float scale,
                                 const float* input,
                                 int8_t* output) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < num) {
    output[index] = float2int8(input[index] / scale);
  }
}

__global__ void Int8ToFp32Kernel(const int num,
                                 const float scale,
                                 const int8_t* input,
                                 float* output) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < num) {
    output[index] = input[index] * scale;
  }
}

void CalibComputeFp32ToInt8::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->As<CUDAContext>();
  auto stream = ctx.exec_stream();

  auto scale = param.scale;
  const auto* din = param.input->data<float>();
  auto* dout = param.output->mutable_data<int8_t>(TARGET(kCUDA));
  int num = static_cast<int>(param.input->numel());
  int threads = 1024;
  int blocks = (num + threads - 1) / threads;
  Fp32ToInt8Kernel<<<blocks, threads, 0, stream>>>(num, scale, din, dout);
  cudaError_t error = cudaGetLastError();
  CHECK(error == cudaSuccess) << cudaGetErrorString(error);
}

void CalibComputeInt8ToFp32::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->As<CUDAContext>();
  auto stream = ctx.exec_stream();

  auto scale = param.scale;
  const auto* din = param.input->data<int8_t>();
  auto* dout = param.output->mutable_data<float>(TARGET(kCUDA));
  int num = static_cast<int>(param.input->numel());
  int threads = 1024;
  int blocks = (num + threads - 1) / threads;
  Int8ToFp32Kernel<<<blocks, threads, 0, stream>>>(num, scale, din, dout);
  cudaError_t error = cudaGetLastError();
  CHECK(error == cudaSuccess) << cudaGetErrorString(error);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(calib,
                     kCUDA,
Z
Zhaolong Xing 已提交
90
                     kFloat,
Z
Zhen Wang 已提交
91 92 93 94
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeFp32ToInt8,
                     fp32_to_int8)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
95 96 97 98 99 100 101
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kAny))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
102 103 104 105
    .Finalize();

REGISTER_LITE_KERNEL(calib,
                     kCUDA,
Z
Zhaolong Xing 已提交
106
                     kFloat,
Z
Zhen Wang 已提交
107 108 109 110
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeInt8ToFp32,
                     int8_to_fp32)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
111 112 113
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
114
    .BindOutput("Out",
Z
Zhaolong Xing 已提交
115 116 117
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
118 119 120 121
    .Finalize();

REGISTER_LITE_KERNEL(calib_once,
                     kCUDA,
Z
Zhaolong Xing 已提交
122
                     kFloat,
Z
Zhen Wang 已提交
123 124 125 126
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeFp32ToInt8,
                     fp32_to_int8)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
127 128 129 130 131 132 133
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kAny))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
134 135 136
    .Finalize();
REGISTER_LITE_KERNEL(calib_once,
                     kCUDA,
Z
Zhaolong Xing 已提交
137
                     kFloat,
Z
Zhen Wang 已提交
138 139 140 141
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeInt8ToFp32,
                     int8_to_fp32)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
142 143 144
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
145
    .BindOutput("Out",
Z
Zhaolong Xing 已提交
146 147 148
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
149
    .Finalize();