// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/core/op_registry.h" #include "lite/core/type_system.h" #include "lite/kernels/cuda/calib_compute.h" namespace paddle { namespace lite { namespace kernels { namespace cuda { __device__ __forceinline__ int8_t float2int8(float x) { x = fmaxf(x, INT8_MIN); x = fminf(x, INT8_MAX); return __float2int_rn(x); } __global__ void Fp32ToInt8Kernel(const int num, const float scale, const float* input, int8_t* output) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < num) { output[index] = float2int8(input[index] / scale); } } __global__ void Int8ToFp32Kernel(const int num, const float scale, const int8_t* input, float* output) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < num) { output[index] = input[index] * scale; } } void CalibComputeFp32ToInt8::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); auto stream = ctx.exec_stream(); auto scale = param.scale; const auto* din = param.input->data(); auto* dout = param.output->mutable_data(TARGET(kCUDA)); int num = static_cast(param.input->numel()); int threads = 1024; int blocks = (num + threads - 1) / threads; Fp32ToInt8Kernel<<>>(num, scale, din, dout); cudaError_t error = cudaGetLastError(); CHECK(error == cudaSuccess) << cudaGetErrorString(error); } void CalibComputeInt8ToFp32::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); auto stream = ctx.exec_stream(); auto scale = param.scale; const auto* din = param.input->data(); auto* dout = param.output->mutable_data(TARGET(kCUDA)); int num = static_cast(param.input->numel()); int threads = 1024; int blocks = (num + threads - 1) / threads; Int8ToFp32Kernel<<>>(num, scale, din, dout); cudaError_t error = cudaGetLastError(); CHECK(error == cudaSuccess) << cudaGetErrorString(error); } } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(calib, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::CalibComputeFp32ToInt8, fp32_to_int8) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt8), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(calib, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::CalibComputeInt8ToFp32, int8_to_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt8), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(calib_once, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::CalibComputeFp32ToInt8, fp32_to_int8) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt8), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(calib_once, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::CalibComputeInt8ToFp32, int8_to_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt8), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kAny))}) .Finalize();