instance_norm_image_compute.cc 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
26 27 28 29
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class InstanceNormImageCompute : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InstanceNormParam;

  std::string doc() const override {
    return "InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#if 1  // onnx/pytorch version
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto out = instance_norm_param_->out;
    auto out_dims = out->dims();
    const int out_n = out_dims[0];
    const int out_c = out_dims[1];
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];
    const int c_group = (out_dims[1] + 3) / 4;

    // TODO(ysh329): add instance_norm + relu pass
    // std::string build_options_ += "-DRELU";
    if (out_h == 128) {
      build_options_ += " -DLOCAL_MEM_128";
    } else if (out_h == 64) {
      build_options_ += " -DLOCAL_MEM_64";
    } else if (out_h > 256) {
      LOG(FATAL) << "Unsupported input height:" << out_h << " of instance norm";
    }

    auto& context = ctx_->As<OpenCLContext>();
67 68 69 70
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto x_dims = x->dims();
    auto out_dims = out->dims();

    const int out_n = out_dims[0];
    const int out_c_group = (out_dims[1] + 3) / 4;
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];

    float epsilon = instance_norm_param_->epsilon;
    auto device_info = CLRuntime::Global()->GetDeviceInfo();
    int max_work_item_size1 = device_info["CL_DEVICE_MAX_WORK_ITEM_SIZES_1"];
    int lws0 = 1;
    int lws1 =
        std::min(static_cast<int>(max_work_item_size1), std::min(256, out_w));
    int lws2 = 1;
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(out_n * out_c_group),
                    static_cast<cl::size_type>(lws1),
                    static_cast<cl::size_type>(lws2)};
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(lws0),
                                       static_cast<cl::size_type>(lws1),
                                       static_cast<cl::size_type>(lws2)};

103
#ifdef LITE_WITH_LOG
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    VLOG(4) << "global_work_size:" << static_cast<int>(global_work_size[0])
            << " " << static_cast<int>(global_work_size[1]) << " "
            << static_cast<int>(global_work_size[2]);
    VLOG(4) << "local_work_size:" << static_cast<int>(local_work_size[0]) << " "
            << static_cast<int>(local_work_size[1]) << " "
            << static_cast<int>(local_work_size[2]);
    VLOG(4) << "out_w:" << out_w;
    VLOG(4) << "out_h:" << out_h;
    VLOG(4) << "out_c_group:" << out_c_group;
    VLOG(4) << "lws1:" << lws1;
    VLOG(4) << "lws2:" << lws2;
    VLOG(4) << "epsilon:" << epsilon;
#endif

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    STL::stringstream kernel_key;
124
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status = kernel.setArg(0, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(1, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(2, out_c_group);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(3, lws1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(4, lws2);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(5, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(6, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(7, *out_img);
    CL_CHECK_FATAL(status);

144 145 146 147 148 149 150
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  local_work_size,
                                  nullptr,
                                  event_);
151 152 153 154
    CL_CHECK_FATAL(status);
  }

#else  // paddle version
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto channel = instance_norm_param_->scale->dims()[0];
    auto batch = instance_norm_param_->x->dims()[0];
    int64_t cgroup = (channel + 3) / 4;
    int64_t cround = cgroup * 4;
    std::vector<half_t> scale_img(cround * batch);
    std::vector<half_t> bias_img(cround * batch);
    const float* scale_data = instance_norm_param_->scale->data<float>();
    const float* bias_data = instance_norm_param_->bias->data<float>();
    //! init scale_img bias_img data
    for (int i = 0; i < channel; ++i) {
      scale_img[i] = Float2Half(scale_data[i]);
      bias_img[i] = Float2Half(bias_data[i]);
    }
    for (int i = channel; i < cround; ++i) {
      scale_img[i] = Float2Half(0.f);
      bias_img[i] = Float2Half(0.f);
    }
    for (int i = 1; i < batch; ++i) {
      memcpy(scale_img.data() + i * cround,
             scale_img.data(),
             cround * sizeof(half_t));
      memcpy(bias_img.data() + i * cround,
             bias_img.data(),
             cround * sizeof(half_t));
    }
    DDim scale_img_size{{cgroup, batch}};
    scale_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], scale_img.data());
    bias_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], bias_img.data());
    auto& context = ctx_->As<OpenCLContext>();
188 189 190 191
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto in_dims = x->dims();

    int batch = in_dims[0];
    int channel = in_dims[1];
    int in_h = in_dims[2];
    int in_w = in_dims[3];

207
#ifdef LITE_WITH_LOG
208 209 210
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
211
#endif
212 213 214 215 216

    auto out_image_shape = InitImageDimInfoWith(in_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
217

218
#ifdef LITE_WITH_LOG
219 220 221 222
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
223
#endif
224 225 226 227 228 229 230 231 232 233 234

    int threads = 512;
    int group_size_x = (channel + 3) / 4;
    int group_size_y = batch;
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(threads),
                                       static_cast<cl::size_type>(1),
                                       static_cast<cl::size_type>(1)};
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(group_size_x * threads),
                    static_cast<cl::size_type>(group_size_y),
                    static_cast<cl::size_type>(1)};
235

236
#ifdef LITE_WITH_LOG
237 238 239 240
    VLOG(4) << "local_work_size:[2D]:" << local_work_size[0] << " "
            << local_work_size[1] << " " << local_work_size[2];
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
241
#endif
242 243

    STL::stringstream kernel_key;
244
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    auto* scale_img = scale_image_.data<half_t, cl::Image2D>();
    auto* bias_img = bias_image_.data<half_t, cl::Image2D>();
    float epsilon = instance_norm_param_->epsilon;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *scale_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *bias_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);

265 266 267 268 269 270 271
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  local_work_size,
                                  nullptr,
                                  event_);
272 273
    CL_CHECK_FATAL(status);
  }
274
#endif
275

276 277 278 279 280 281 282 283
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

284 285
 protected:
  param_t* instance_norm_param_{nullptr};
286
  std::string kernel_func_name_{"instance_norm_onnx"};
287
  std::string build_options_{"-DCL_DTYPE_half"};
288
  std::string time_stamp_{GetTimeStamp()};
X
xiebaiyuan 已提交
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  Tensor scale_image_;
  Tensor bias_image_;
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(instance_norm,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::InstanceNormImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Y",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();