executor.cpp 14.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
29
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
30 31 32 33
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42
  fseek(file, 0, SEEK_END);
43
  int64_t size = ftell(file);
L
liuruilong 已提交
44 45 46 47
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
56 57
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
58
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
59 60 61 62 63 64 65
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
66 67
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
W
wangliu 已提交
68 69
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
70 71 72
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
73 74 75 76 77
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
78
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
79 80 81 82 83
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
84 85 86
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
87 88
    }
  }
W
wangliu 已提交
89
  if (program_.combined) {
L
liuruilong 已提交
90 91 92 93
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
94
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
95
      to_predict_program_->Block(0);
L
liuruilong 已提交
96
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
97
  for (const auto &op : ops) {
L
liuruilong 已提交
98 99
    op->Init();
  }
W
wangliu 已提交
100 101 102 103
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
104
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
105
  // 1. version
106 107 108
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
109 110

  // 2 Lod information
L
liuruilong 已提交
111
  uint64_t *lod_level_ptr = new uint64_t();
112
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
113 114
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
115
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
116

W
wangliu 已提交
117 118 119
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
120 121
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
L
liuruilong 已提交
122
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
123
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
124 125

    for (int k = 0; k < tmp.size(); ++k) {
126 127
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
128 129
    }

W
wangliu 已提交
130 131 132 133 134 135 136
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
137 138
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
139 140

  // 4. tensor desc
141 142
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
143

W
wangliu 已提交
144
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
145
  for (int m = 0; m < size; ++m) {
146
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
147
  }
148
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
149 150 151 152 153 154 155 156 157

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

158
  void *memory = nullptr;
W
wangliu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }
W
wangliu 已提交
183 184 185 186 187 188 189 190
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
H
hanbuhe 已提交
191
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
W
wangliu 已提交
192 193 194 195 196
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
197 198 199 200 201 202 203 204
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
W
wangliu 已提交
205 206
    }
    (*data) += (sizeof(char) * memory_size * type_size);
L
liuruilong 已提交
207
  }
W
wangliu 已提交
208 209 210 211 212 213 214 215 216 217 218 219
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
220

L
liuruilong 已提交
221 222
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
223
        char *data = origin_data;
224
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
225
        delete origin_data;
W
wangliu 已提交
226 227 228 229 230 231 232 233 234 235 236
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
237
template <typename Dtype, Precision P>
L
liuruilong 已提交
238
void Executor<Dtype, P>::InitCombineMemory() {
239 240 241 242 243 244 245 246 247
  char *origin_data;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
    origin_data = (char *)program_.combined_params_buf;
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    origin_data = Get_binary_data(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
L
liuruilong 已提交
248
  char *data = origin_data;
L
liuruilong 已提交
249 250 251 252 253 254 255 256
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
257
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
258 259 260 261 262 263 264 265 266
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
267
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
268 269
}

W
wangliu 已提交
270
template <typename Dtype, Precision P>
W
wangliu 已提交
271 272
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
273 274 275 276 277 278
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
279
      to_predict_program_->Block(0);
D
dolphin8 已提交
280
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
281
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
282
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
283
#endif
D
dolphin8 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
323
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
324 325 326 327
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
328
#endif
D
dolphin8 已提交
329
        ops[opi]->Run();
D
dolphin8 已提交
330
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
331 332
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
333
#endif
D
dolphin8 已提交
334 335 336
        finishF(opi);
      });
    }
W
wangliu 已提交
337
  }
D
dolphin8 已提交
338 339
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
340
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
341 342 343 344
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
345 346

    // to Run
D
dolphin8 已提交
347 348 349 350 351
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
352 353
  }
#endif
W
wangliu 已提交
354
  auto last_op = ops.rbegin();
D
dolphin8 已提交
355

W
wangliu 已提交
356 357 358 359 360 361
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
362 363
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
364 365
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
380 381

  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
382 383 384 385 386
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
387 388 389
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
390
  }
391 392
  //  fclose(pf);

D
dolphin8 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
406 407 408
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
409 410 411 412
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
413
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
414 415 416 417 418
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
419 420 421
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
422
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
423 424
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
425 426 427 428 429 430 431 432
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
433 434 435
}

template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
436
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
437
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
438 439

}  // namespace paddle_mobile