executor.cpp 13.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
29
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
30 31 32 33
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42
  fseek(file, 0, SEEK_END);
43
  int64_t size = ftell(file);
L
liuruilong 已提交
44 45 46 47
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
56 57
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
58
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
59 60 61 62 63 64 65 66 67
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
68 69 70
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
71 72 73 74 75
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
76
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
77 78 79 80 81
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
82 83 84
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
85 86
    }
  }
W
wangliu 已提交
87
  if (program_.combined) {
L
liuruilong 已提交
88 89 90 91
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
92 93

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
94
      to_predict_program_->Block(0);
L
liuruilong 已提交
95
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
96
  for (const auto &op : ops) {
L
liuruilong 已提交
97 98
    op->Init();
  }
W
wangliu 已提交
99 100 101 102
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
103
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
104
  // 1. version
105 106 107
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
108 109

  // 2 Lod information
L
liuruilong 已提交
110
  uint64_t *lod_level_ptr = new uint64_t();
111
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
112 113
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
114
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
115

W
wangliu 已提交
116 117 118
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
119 120
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
L
liuruilong 已提交
121
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
122
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
123 124

    for (int k = 0; k < tmp.size(); ++k) {
125 126
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
127 128
    }

W
wangliu 已提交
129 130 131 132 133 134 135
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
136 137
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
138 139

  // 4. tensor desc
140 141
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
142

W
wangliu 已提交
143
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
144
  for (int m = 0; m < size; ++m) {
145
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
146
  }
147
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
183
  for (int n = 0; n < memory_size * type_size; ++n) {
184
    static_cast<char *>(memory)[n] = (*data)[n];
L
liuruilong 已提交
185
  }
186
  (*data) += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
187 188 189 190 191 192 193 194 195 196 197 198
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
199

L
liuruilong 已提交
200 201
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
202
        char *data = origin_data;
203
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
204
        delete origin_data;
W
wangliu 已提交
205 206 207 208 209 210 211 212 213 214 215
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
216
template <typename Dtype, Precision P>
L
liuruilong 已提交
217
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
218
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
219
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
220
  char *data = origin_data;
L
liuruilong 已提交
221 222 223 224 225 226 227 228
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
229
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
230 231 232 233 234 235 236 237 238
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
239
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
240 241
}

W
wangliu 已提交
242
template <typename Dtype, Precision P>
W
wangliu 已提交
243 244
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
245 246 247 248 249 250
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
251
      to_predict_program_->Block(0);
D
dolphin8 已提交
252
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
253
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
254
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
255
#endif
D
dolphin8 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
295
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
296 297 298 299
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
300
#endif
D
dolphin8 已提交
301
        ops[opi]->Run();
D
dolphin8 已提交
302
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
303 304
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
305
#endif
D
dolphin8 已提交
306 307 308
        finishF(opi);
      });
    }
W
wangliu 已提交
309
  }
D
dolphin8 已提交
310 311
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
312
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
313 314 315 316
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
317 318

    // to Run
D
dolphin8 已提交
319 320 321 322 323
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
324 325
  }
#endif
W
wangliu 已提交
326
  auto last_op = ops.rbegin();
D
dolphin8 已提交
327

W
wangliu 已提交
328 329 330 331 332 333
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
334 335
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
336 337
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
352 353

  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
354 355 356 357 358
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
359 360 361
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
362
  }
363 364
  //  fclose(pf);

D
dolphin8 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
378 379 380
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
381 382 383 384
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
385
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
386 387 388 389 390
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
391 392 393
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
394
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
395 396
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
397 398 399 400 401 402 403 404
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
405 406 407
}

template class Executor<CPU, Precision::FP32>;
L
liuruilong 已提交
408 409
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
410 411

}  // namespace paddle_mobile