executor.cpp 13.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
W
wangliu 已提交
17
#include <vector>
L
liuruilong 已提交
18
#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
21 22
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
23
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
24 25 26 27
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
28
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
29 30 31 32
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
33 34 35 36

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
37 38
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
39 40
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
41
  fseek(file, 0, SEEK_END);
42
  int64_t size = ftell(file);
L
liuruilong 已提交
43 44 45 46
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
47 48
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
49 50
  fclose(file);
  return data;
W
wangliu 已提交
51 52 53 54
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
55 56
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
57
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
58 59 60 61 62 63 64 65 66
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
67 68 69
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
70 71 72 73 74
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
75
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
76 77 78 79 80
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
81 82 83
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
84 85
    }
  }
W
wangliu 已提交
86
  if (program_.combined) {
L
liuruilong 已提交
87 88 89 90
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
91 92

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
93
      to_predict_program_->Block(0);
L
liuruilong 已提交
94
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
95
  for (const auto &op : ops) {
L
liuruilong 已提交
96 97
    op->Init();
  }
W
wangliu 已提交
98 99 100 101
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
102
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
103
  // 1. version
104 105 106
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
107 108

  // 2 Lod information
L
liuruilong 已提交
109
  uint64_t *lod_level_ptr = new uint64_t();
110
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
111 112
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
113
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
114

W
wangliu 已提交
115 116 117
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
118 119
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
L
liuruilong 已提交
120
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
121
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
122 123

    for (int k = 0; k < tmp.size(); ++k) {
124 125
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
126 127
    }

W
wangliu 已提交
128 129 130 131 132 133 134
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
135 136
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
137 138

  // 4. tensor desc
139 140
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
141

W
wangliu 已提交
142
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
143
  for (int m = 0; m < size; ++m) {
144
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
145
  }
146
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
182
  for (int n = 0; n < memory_size * type_size; ++n) {
183
    static_cast<char *>(memory)[n] = (*data)[n];
L
liuruilong 已提交
184
  }
185
  (*data) += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
186 187 188 189 190 191 192 193 194 195 196 197
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
198

L
liuruilong 已提交
199 200
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
201
        char *data = origin_data;
202
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
203
        delete origin_data;
W
wangliu 已提交
204 205 206 207 208 209 210 211 212 213 214
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
215
template <typename Dtype, Precision P>
L
liuruilong 已提交
216
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
217
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
218
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
219
  char *data = origin_data;
L
liuruilong 已提交
220 221 222 223 224 225 226 227
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
228
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
229 230 231 232 233 234 235 236 237
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
238
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
239 240
}

W
wangliu 已提交
241
template <typename Dtype, Precision P>
W
wangliu 已提交
242 243
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
244 245 246 247 248 249
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
250
      to_predict_program_->Block(0);
D
dolphin8 已提交
251
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
252
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
253
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
254
#endif
D
dolphin8 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
294
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
295 296 297 298
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
299
#endif
D
dolphin8 已提交
300
        ops[opi]->Run();
D
dolphin8 已提交
301
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
302 303
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
304
#endif
D
dolphin8 已提交
305 306 307
        finishF(opi);
      });
    }
W
wangliu 已提交
308
  }
D
dolphin8 已提交
309 310
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
311
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
312 313 314 315
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
316 317

    // to Run
D
dolphin8 已提交
318 319 320 321 322
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
323 324
  }
#endif
W
wangliu 已提交
325
  auto last_op = ops.rbegin();
D
dolphin8 已提交
326

W
wangliu 已提交
327 328 329 330 331 332
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
333 334
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
335 336
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
351 352

  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
353 354 355 356 357
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
358 359 360
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
361
  }
362 363
  //  fclose(pf);

D
dolphin8 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
377 378 379
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
380 381 382 383
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
384
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
385 386 387 388 389
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
390 391 392
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
393
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
394 395
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
396 397 398 399 400 401 402 403
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
404 405 406
}

template class Executor<CPU, Precision::FP32>;
L
liuruilong 已提交
407 408
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
409 410

}  // namespace paddle_mobile