// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { template void relu_compute_ref(const dtype *x_data, const DDim &x_dim, dtype *out_data) { for (int i = 0; i < x_dim.production(); ++i) { out_data[i] = x_data[i] > 0.f ? x_data[i] : 0.f; } } TEST(opencl_relu, compute) { // prepare data const DDim x_dim = DDim(std::vector{3, 6, 10, 10}); lite::Tensor x, out; x.Resize(x_dim); out.Resize(x_dim); auto *x_data = x.mutable_data(TARGET(kOpenCL)); std::default_random_engine engine; std::uniform_real_distribution dist(-10, 10); auto *mapped_x = static_cast( TargetWrapperCL::Map(x_data, 0, sizeof(float) * x_dim.production())); for (int i = 0; i < x_dim.production(); i++) { mapped_x[i] = dist(engine); } // set param and kernel, then run operators::ActivationParam param; param.X = &x; param.Out = &out; std::unique_ptr context(new KernelContext); context->As().InitOnce(); auto kernels = KernelRegistry::Global().Create( "relu", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)); ASSERT_FALSE(kernels.empty()); auto kernel = std::move(kernels.front()); kernel->SetParam(param); std::unique_ptr relu_context(new KernelContext); context->As().CopySharedTo( &(relu_context->As())); kernel->SetContext(std::move(relu_context)); kernel->Launch(); auto *wait_list = context->As().cl_wait_list(); auto *out_ptr = param.Out->data(); auto it = wait_list->find(out_ptr); if (it != wait_list->end()) { VLOG(4) << "--- Find the sync event for the target cl tensor. ---"; auto &event = *(it->second); event.wait(); } else { LOG(FATAL) << "Could not find the sync event for the target cl tensor."; } // run compute ref and check std::unique_ptr out_ref(new float[x_dim.production()]); relu_compute_ref(mapped_x, x_dim, out_ref.get()); auto *out_data = out.mutable_data(); auto *mapped_out = static_cast( TargetWrapperCL::Map(out_data, 0, sizeof(float) * x_dim.production())); for (int i = 0; i < x_dim.production(); i++) { EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6); } TargetWrapperCL::Unmap(out_data, mapped_out); TargetWrapperCL::Unmap(x_data, mapped_x); } } // namespace lite } // namespace paddle USE_LITE_KERNEL(relu, kOpenCL, kFloat, kNCHW, def);