split_op_test.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/split_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
19
#include "lite/core/subgraph_bridge_registry.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

template <typename dtype>
void split_ref(const std::shared_ptr<operators::SplitOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  int num = op_info->GetAttr<int>("num");
  int axis = op_info->GetAttr<int>("axis");
  std::vector<int> sections = op_info->GetAttr<std::vector<int>>("sections");
  std::vector<lite::Tensor*> output_vec;
  auto output = op_info->Output("Out");
  for (auto out_var : output) {
    output_vec.push_back(scope->Var(out_var)->GetMutable<Tensor>());
  }
  auto in_dims = x->dims();
  auto rank = in_dims.size();
  int outs_number = output_vec.size();
  std::vector<lite::DDimLite> outs_dims;
  outs_dims.reserve(outs_number);
  if (axis < 0) {
    axis += rank;
  }
  if (num > 0) {
    int out_axis_dim = in_dims[axis] / num;
    for (int i = 0; i < outs_number; ++i) {
      auto dim = in_dims;
      dim[axis] = out_axis_dim;
      outs_dims.push_back(dim);
    }
  } else if (sections.size() > 0) {
    for (size_t i = 0; i < outs_number; ++i) {
      auto dim = in_dims;
      dim[axis] = sections[i];
      outs_dims.push_back(dim);
    }
  }
  for (int j = 0; j < outs_dims.size(); ++j) {
    output_vec[j]->Resize(outs_dims[j]);
  }

  const dtype* din = x->mutable_data<const dtype>();
  std::vector<int> in_strides(in_dims.size());
  in_strides[in_dims.size() - 1] = in_dims[in_dims.size() - 1];
  for (int i = in_dims.size() - 2; i >= 0; --i) {
    in_strides[i] = in_strides[i + 1] * in_dims[i];
  }

  int input_offset = 0;
  for (auto out : output_vec) {
    auto out_dim = out->dims();
    std::vector<int> out_strides(out_dim.size());
    out_strides[out_dim.size() - 1] = out_dim[out_dim.size() - 1];
    for (int i = out_dim.size() - 2; i >= 0; --i) {
      out_strides[i] = out_strides[i + 1] * out_dim[i];
    }

    dtype* out_data = out->mutable_data<dtype>();
    int before = out_strides[0] / out_strides[axis];
    int in_after = in_strides[axis];
    int out_after = out_strides[axis];

    for (int i = 0; i < before; ++i) {
      std::memcpy(out_data + i * out_after,
                  din + input_offset + i * in_after,
                  sizeof(dtype) * out_after);
    }
    input_offset += out_strides[axis];
  }
}

void test_split(int bs,
                int ic,
                int ih,
                int iw,
                int axis,
                int num,
                std::vector<int> sections) {
  // prepare input&output variables
  std::string x_var_name = "x";
  std::string out_var_name_1 = "out_1";
  std::string out_var_name_2 = "out_2";
  std::string out_ref_var_name_1 = "out_ref_1";
  std::string out_ref_var_name_2 = "out_ref_2";

  Scope scope;
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out_1 = scope.Var(out_var_name_1)->GetMutable<Tensor>();
  auto* out_2 = scope.Var(out_var_name_2)->GetMutable<Tensor>();
  auto* out_ref_1 = scope.Var(out_ref_var_name_1)->GetMutable<Tensor>();
  auto* out_ref_2 = scope.Var(out_ref_var_name_2)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});
  // initialize input&output data
  FillTensor<float>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("split");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name_1, out_var_name_2});
  opdesc.SetAttr("axis", axis);
  opdesc.SetAttr("sections", sections);
  opdesc.SetAttr("num", num);

  auto op = CreateOp<operators::SplitOp>(opdesc, &scope);
  split_ref<float>(op);
  out_ref_1->CopyDataFrom(*out_1);
  out_ref_2->CopyDataFrom(*out_2);
  // execute reference implementation and save to output tensor

  Tensor input;
  input.Resize({bs, ic, ih, iw});
  transpose<float>(x->mutable_data<float>(),
                   input.mutable_data<float>(),
                   {static_cast<int>(bs),
                    static_cast<int>(ic),
                    static_cast<int>(ih),
                    static_cast<int>(iw)},
                   {0, 2, 3, 1});
  x->CopyDataFrom(input);
  LaunchOp(op, {x_var_name}, {out_var_name_1, out_var_name_2});

  // compare results
  auto* out_data_1 = out_1->mutable_data<float>();
  auto* out_data_2 = out_2->mutable_data<float>();
  auto* out_ref_data_1 = out_ref_1->mutable_data<float>();
  auto* out_ref_data_2 = out_ref_2->mutable_data<float>();

  Tensor output1, output2;
  output1.Resize(out_1->dims());
  output2.Resize(out_2->dims());
  transpose<float>(out_data_1,
                   output1.mutable_data<float>(),
                   {static_cast<int>(out_1->dims()[0]),
                    static_cast<int>(out_1->dims()[2]),
                    static_cast<int>(out_1->dims()[3]),
                    static_cast<int>(out_1->dims()[1])},
                   {0, 3, 1, 2});
  transpose<float>(out_data_2,
                   output2.mutable_data<float>(),
                   {static_cast<int>(out_2->dims()[0]),
                    static_cast<int>(out_2->dims()[2]),
                    static_cast<int>(out_2->dims()[3]),
                    static_cast<int>(out_2->dims()[1])},
                   {0, 3, 1, 2});
  out_data_1 = output1.mutable_data<float>();
  out_data_2 = output2.mutable_data<float>();
  for (int i = 0; i < out_1->dims().production(); i++) {
    VLOG(5) << i;
    EXPECT_NEAR(out_data_1[i], out_ref_data_1[i], 5e-4);
  }
  for (int i = 0; i < out_2->dims().production(); i++) {
    VLOG(5) << i;
    EXPECT_NEAR(out_data_2[i], out_ref_data_2[i], 5e-4);
  }
}

TEST(MLUBridges, split) {
  test_split(4, 2, 3, 1, 0, 2, {});
  test_split(4, 2, 3, 1, 0, 0, {3, 1});
  test_split(4, 6, 3, 1, 1, 2, {});
  test_split(4, 6, 3, 1, 1, 0, {2, 4});
  test_split(4, 2, 2, 1, 2, 2, {});
  test_split(4, 2, 6, 1, 2, 0, {3, 3});
  test_split(4, 2, 3, 4, 3, 2, {});
  test_split(4, 2, 3, 6, 3, 0, {5, 1});
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(split, kMLU);