Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
55db1963
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55db1963
编写于
7月 09, 2020
作者:
M
MaxwellDing
提交者:
GitHub
7月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] feat: add some kernels as bridge, test=develop (#3896)
add mlu kernel dropout split squeeze reshape
上级
9ae1e645
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
991 addition
and
0 deletion
+991
-0
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+13
-0
lite/kernels/mlu/bridges/dropout_op.cc
lite/kernels/mlu/bridges/dropout_op.cc
+92
-0
lite/kernels/mlu/bridges/dropout_op_test.cc
lite/kernels/mlu/bridges/dropout_op_test.cc
+158
-0
lite/kernels/mlu/bridges/paddle_use_bridges.h
lite/kernels/mlu/bridges/paddle_use_bridges.h
+6
-0
lite/kernels/mlu/bridges/reshape_op.cc
lite/kernels/mlu/bridges/reshape_op.cc
+130
-0
lite/kernels/mlu/bridges/reshape_op_test.cc
lite/kernels/mlu/bridges/reshape_op_test.cc
+98
-0
lite/kernels/mlu/bridges/split_op.cc
lite/kernels/mlu/bridges/split_op.cc
+79
-0
lite/kernels/mlu/bridges/split_op_test.cc
lite/kernels/mlu/bridges/split_op_test.cc
+199
-0
lite/kernels/mlu/bridges/squeeze_op.cc
lite/kernels/mlu/bridges/squeeze_op.cc
+100
-0
lite/kernels/mlu/bridges/squeeze_op_test.cc
lite/kernels/mlu/bridges/squeeze_op_test.cc
+116
-0
未找到文件。
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
55db1963
...
...
@@ -18,8 +18,12 @@ lite_cc_library(subgraph_bridge_fc_op_mlu SRCS fc_op.cc DEPS ${subgraph_bridge_d
lite_cc_library
(
subgraph_bridge_scale_op_mlu SRCS scale_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_interp_op_mlu SRCS interpolate_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_concat_op_mlu SRCS concat_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_split_op_mlu SRCS split_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_cast_op_mlu SRCS cast_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_layout_op_mlu SRCS layout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_squeeze_op_mlu SRCS squeeze_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_reshape_op_mlu SRCS reshape_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_utility_mlu
...
...
@@ -34,10 +38,15 @@ set(mlu_subgraph_bridges
subgraph_bridge_scale_op_mlu
subgraph_bridge_interp_op_mlu
subgraph_bridge_concat_op_mlu
subgraph_bridge_dropout_op_mlu
subgraph_bridge_split_op_mlu
subgraph_bridge_cast_op_mlu
subgraph_bridge_layout_op_mlu
subgraph_bridge_squeeze_op_mlu
subgraph_bridge_reshape_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
lite_cc_library
(
subgraph_test_helper_mlu SRCS test_helper.cc DEPS
${
mlu_subgraph_bridges
}
)
lite_cc_test
(
test_conv_converter_mlu SRCS conv_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_act_converter_mlu SRCS act_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
...
...
@@ -49,6 +58,10 @@ lite_cc_test(test_fc_converter_mlu SRCS fc_op_test.cc DEPS scope optimizer targe
lite_cc_test
(
test_scale_converter_mlu SRCS scale_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_interp_converter_mlu SRCS interpolate_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_concat_converter_mlu SRCS concat_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_split_converter_mlu SRCS split_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_layout_converter_mlu SRCS layout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_cast_converter_mlu SRCS cast_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_squeeze_converter_mlu SRCS squeeze_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_reshape_converter_mlu SRCS reshape_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
message
(
STATUS
"+++++ mlu_subgraph_bridges:
${
mlu_subgraph_bridges
}
"
)
lite/kernels/mlu/bridges/dropout_op.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
DropoutConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Create act node and set params from op
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
/* auto mask_var_name = op_info->Output("Mask").front(); */
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
/* auto mask = scope->FindVar(mask_var_name)->GetMutable<Tensor>(); */
/* auto mask_dims = mask->dims().Vectorize(); */
/* auto mask_tensor = graph->AddNode( */
/* mask_var_name, mask_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); */
// is_test is true by default
// if(op_info->HasAttr("is_test")){
// auto is_test = op_info->GetAttr<bool>("is_test");
// CHECK(is_test != true);
// }
// Param fix_seed and seed is useless in MLU
auto
dropout_implementation
=
op_info
->
GetAttr
<
std
::
string
>
(
"dropout_implementation"
);
auto
dropout_prob
=
op_info
->
GetAttr
<
float
>
(
"dropout_prob"
);
float
alpha
=
1.0
f
-
dropout_prob
;
if
(
dropout_implementation
==
"upscale_in_train"
)
{
alpha
=
1.
;
}
float
beta
=
0.
;
std
::
vector
<
int64_t
>
shape
=
{
1
,
1
,
1
,
1
};
std
::
string
alpha_var_name
=
string_format
(
"dropout_alpha_%p"
,
op
);
std
::
string
beta_var_name
=
string_format
(
"dropout_beta_%p"
,
op
);
auto
alpha_tensor
=
graph
->
AddNode
(
alpha_var_name
,
shape
,
CNML_CONST
,
CNML_NHWC
,
graph
->
FPType
());
auto
beta_tensor
=
graph
->
AddNode
(
beta_var_name
,
shape
,
CNML_CONST
,
CNML_NHWC
,
graph
->
FPType
());
graph
->
BindConstRawData
(
alpha_var_name
,
&
alpha
,
1
);
graph
->
BindConstRawData
(
beta_var_name
,
&
beta
,
1
);
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
cnmlBaseOp_t
scale_op
;
CNML_CALL
(
cnmlCreateScaleOp
(
&
scale_op
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
(),
alpha_tensor
->
mlu_tensor
(),
beta_tensor
->
mlu_tensor
()));
graph
->
FuseOp
(
scale_op
);
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
DropoutConverter
);
lite/kernels/mlu/bridges/dropout_op_test.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/dropout_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
void
dropout_ref
(
const
std
::
shared_ptr
<
operators
::
DropoutOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
dropout_implementation
=
op_info
->
GetAttr
<
std
::
string
>
(
"dropout_implementation"
);
auto
dropout_prob
=
op_info
->
GetAttr
<
float
>
(
"dropout_prob"
);
float
alpha
=
1.0
f
-
dropout_prob
;
if
(
dropout_implementation
==
"upscale_in_train"
)
{
alpha
=
1.
;
}
float
beta
=
0.
;
auto
x_data
=
x
->
data
<
float
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
DDim
x_dims
=
x
->
dims
();
DDim
out_dims
=
out
->
dims
();
CHECK_EQ
(
x_dims
.
production
(),
out_dims
.
production
());
for
(
int
i
=
0
;
i
<
out_dims
.
production
();
i
++
)
{
out_data
[
i
]
=
x_data
[
i
]
*
alpha
+
beta
;
}
}
void
test_dropout
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
std
::
string
dropout_implementation
,
float
dropout_prob
,
float
bias
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
mask_var_name
(
"mask"
);
std
::
string
out_ref_var_name
(
"out_ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
mask
=
scope
.
Var
(
mask_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
// initialize input&output data
FillTensor
<
float
,
int
>
(
x
);
// initialize op desc
bool
is_test
=
true
;
bool
fix_seed
=
false
;
int
seed
=
0
;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"dropout"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetOutput
(
"Mask"
,
{
mask_var_name
});
opdesc
.
SetAttr
(
"is_test"
,
is_test
);
opdesc
.
SetAttr
(
"fix_seed"
,
fix_seed
);
opdesc
.
SetAttr
(
"seed"
,
seed
);
opdesc
.
SetAttr
(
"dropout_implementation"
,
dropout_implementation
);
opdesc
.
SetAttr
(
"dropout_prob"
,
dropout_prob
);
VLOG
(
6
)
<<
"mask: "
<<
mask
->
dims
()[
0
]
<<
std
::
endl
;
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
DropoutOp
>
(
opdesc
,
&
scope
);
dropout_ref
(
op
);
out_ref
->
CopyDataFrom
(
*
out
);
Tensor
input_trans
;
input_trans
.
Resize
({
bs
,
ic
,
ih
,
iw
});
transpose
(
x
->
mutable_data
<
float
>
(),
input_trans
.
mutable_data
<
float
>
(),
{
bs
,
ic
,
ih
,
iw
},
{
0
,
2
,
3
,
1
});
auto
os
=
out
->
dims
();
out
->
Resize
({
static_cast
<
int
>
(
os
[
0
]),
static_cast
<
int
>
(
os
[
2
]),
static_cast
<
int
>
(
os
[
3
]),
static_cast
<
int
>
(
os
[
1
])});
x
->
CopyDataFrom
(
input_trans
);
x
->
Resize
({
bs
,
ih
,
iw
,
ic
});
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
// execute reference implementation and save to output tensor('out')
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
Tensor
output_trans
;
output_trans
.
Resize
(
os
);
transpose
(
out_data
,
output_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
os
[
0
]),
static_cast
<
int
>
(
os
[
2
]),
static_cast
<
int
>
(
os
[
3
]),
static_cast
<
int
>
(
os
[
1
])},
{
0
,
3
,
1
,
2
});
out_data
=
output_trans
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-5
);
}
}
TEST
(
MLUBridges
,
dropout
)
{
for
(
auto
bs
:
{
1
,
3
})
{
for
(
auto
ic
:
{
1
,
3
})
{
for
(
auto
ih
:
{
3
,
4
})
{
for
(
auto
iw
:
{
4
,
3
})
{
for
(
auto
dropout_implementation
:
{
"downgrade_in_infer"
,
"upscale_in_train"
})
{
for
(
auto
dropout_prob
:
{
0.
f
,
1.0
f
})
{
VLOG
(
3
)
<<
"bs: "
<<
bs
<<
" ic: "
<<
ic
<<
" ih: "
<<
ih
<<
" iw: "
<<
iw
<<
" dropout_implementation: "
<<
dropout_implementation
<<
" dropout_prob: "
<<
dropout_prob
;
test_dropout
(
bs
,
ic
,
ih
,
iw
,
dropout_implementation
,
dropout_prob
,
0.
);
}
}
}
}
}
}
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
);
lite/kernels/mlu/bridges/paddle_use_bridges.h
浏览文件 @
55db1963
...
...
@@ -29,5 +29,11 @@ USE_SUBGRAPH_BRIDGE(concat, kMLU);
USE_SUBGRAPH_BRIDGE
(
scale
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
sigmoid
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
cast
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
layout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
reshape
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
reshape2
,
kMLU
);
lite/kernels/mlu/bridges/reshape_op.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
ReshapeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
// ================== Trans1: NHWC => NCHW ===========================
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
trans_1_axis
=
std
::
move
(
GetAxisNHWC2NCHW
<
int
>
(
x
->
dims
().
size
()));
auto
trans1_out
=
graph
->
AddNode
(
x_var_name
+
".trans.i"
,
x
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
(),
CNML_NCHW
);
cnmlBaseOp_t
trans1_op
{
nullptr
};
cnmlNdTransposeOpParam_t
trans1_param
{
nullptr
};
CNML_CALL
(
cnmlCreateNdTransposeOpParam
(
&
trans1_param
,
trans_1_axis
.
data
(),
trans_1_axis
.
size
()));
CNML_CALL
(
cnmlCreateNdTransposeProOp
(
&
trans1_op
,
input_tensor
->
mlu_tensor
(),
trans1_out
->
mlu_tensor
(),
trans1_param
));
// ======================== Trans1 End ==================================
// ======================= Reshape op ===================================
cnmlBaseOp_t
reshape_op
;
auto
trans2_input
=
graph
->
AddNode
(
out_var_name
+
".trans.o"
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
(),
CNML_NCHW
);
cnmlReshapeOpParam_t
reshape_param
{
nullptr
};
int
cnml_trans2_input_shape
[
4
];
CNML_CALL
(
cnmlGetTensorShape
(
trans2_input
->
mlu_tensor
(),
cnml_trans2_input_shape
));
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
reshape_param
,
cnml_trans2_input_shape
,
4
));
// Use cnmlCreatexxxOpForward to create op.
CNML_CALL
(
cnmlCreateReshapeOp
(
&
reshape_op
,
reshape_param
,
trans1_out
->
mlu_tensor
(),
trans2_input
->
mlu_tensor
()));
// ======================= Reshape op End ===================================
// ================== Trans2: NCHW => NHWC ===============================
auto
trans_2_axis
=
std
::
move
(
GetAxisNCHW2NHWC
<
int
>
(
output
->
dims
().
size
()));
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
cnmlBaseOp_t
trans2_op
{
nullptr
};
cnmlNdTransposeOpParam_t
trans2_param
{
nullptr
};
CNML_CALL
(
cnmlCreateNdTransposeOpParam
(
&
trans2_param
,
trans_2_axis
.
data
(),
trans_2_axis
.
size
()));
CNML_CALL
(
cnmlCreateNdTransposeProOp
(
&
trans2_op
,
trans2_input
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
(),
trans2_param
));
// ======================== Trans2 End ==================================
// =============== DEBUG ====================
VLOG
(
6
)
<<
"x_var_name: "
<<
x_var_name
;
VLOG
(
6
)
<<
"out_var_name: "
<<
out_var_name
;
VLOG
(
6
)
<<
"input dim: "
<<
x
->
dims
();
VLOG
(
6
)
<<
"output dim: "
<<
output
->
dims
();
int
cnml_input_shape
[
4
];
CNML_CALL
(
cnmlGetTensorShape
(
input_tensor
->
mlu_tensor
(),
cnml_input_shape
));
VLOG
(
6
)
<<
"cnml input dim: "
;
for
(
size_t
i
=
0
;
i
<
4
;
i
++
)
{
VLOG
(
6
)
<<
cnml_input_shape
[
i
];
}
// cnmlPrintTensor(input_tensor->mlu_tensor(), CNML_TENSOR);
// cnmlPrintTensor(trans1_out->mlu_tensor(), CNML_TENSOR);
// cnmlPrintTensor(trans2_input->mlu_tensor(), CNML_TENSOR);
// cnmlPrintTensor(output_tensor->mlu_tensor(), CNML_TENSOR);
// =============== DEBUG END =================
graph
->
FuseOp
(
trans1_op
);
graph
->
FuseOp
(
reshape_op
);
graph
->
FuseOp
(
trans2_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
trans1_op
));
CNML_CALL
(
cnmlDestroyBaseOp
(
&
reshape_op
));
CNML_CALL
(
cnmlDestroyBaseOp
(
&
trans2_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
reshape
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ReshapeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
reshape2
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ReshapeConverter
);
lite/kernels/mlu/bridges/reshape_op_test.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/reshape_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
void
test_reshape
(
std
::
vector
<
int64_t
>
input_shape
,
std
::
vector
<
int64_t
>
out_shape
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
input_shape
);
Tensor
x_cpu
;
// initialize input&output data
FillTensor
<
float
,
int
>
(
x
);
x_cpu
.
CopyDataFrom
(
*
x
);
Tensor
input_trans
;
input_trans
.
Resize
(
input_shape
);
transpose
(
x
->
mutable_data
<
float
>
(),
input_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
])},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input_trans
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"reshape2"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
std
::
vector
<
int
>
shape_attr
;
shape_attr
.
resize
(
out_shape
.
size
());
for
(
size_t
i
=
0
;
i
<
out_shape
.
size
();
i
++
)
{
shape_attr
[
i
]
=
static_cast
<
int
>
(
out_shape
[
i
]);
}
opdesc
.
SetAttr
<
std
::
vector
<
int
>>
(
"shape"
,
shape_attr
);
auto
op
=
CreateOp
<
operators
::
ReshapeOp
>
(
opdesc
,
&
scope
);
auto
os
=
out
->
dims
();
out
->
Resize
(
out_shape
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
Tensor
out_trans
;
out_trans
.
Resize
(
out_shape
);
transpose
(
out
->
mutable_data
<
float
>
(),
out_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_shape
[
0
]),
static_cast
<
int
>
(
out_shape
[
1
]),
static_cast
<
int
>
(
out_shape
[
2
]),
static_cast
<
int
>
(
out_shape
[
3
])},
{
0
,
3
,
1
,
2
});
out
->
CopyDataFrom
(
out_trans
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
x_cpu
.
mutable_data
<
float
>
()[
i
],
1e-5
);
}
}
TEST
(
MLUBridges
,
reshape
)
{
test_reshape
({
1
,
2
,
4
,
4
},
{
1
,
4
,
2
,
4
});
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
reshape
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
reshape2
,
kMLU
);
lite/kernels/mlu/bridges/split_op.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SplitConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
().
Vectorize
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
);
auto
param_axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
auto
num
=
op_info
->
GetAttr
<
int
>
(
"num"
);
auto
sections
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
int64_t
sections_num
=
static_cast
<
int64_t
>
(
sections
.
size
());
auto
output_num
=
num
>
0
?
num
:
sections_num
;
std
::
vector
<
cnmlTensor_t
>
output_tensor
;
for
(
auto
out_name
:
out_var_name
)
{
auto
out
=
scope
->
FindVar
(
out_name
)
->
GetMutable
<
Tensor
>
();
auto
out_dims
=
out
->
dims
().
Vectorize
();
auto
out_tensor
=
graph
->
AddNode
(
out_name
,
out_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
output_tensor
.
push_back
(
out_tensor
->
mlu_tensor
());
}
auto
dims
=
x_dims
.
size
();
int
axis
=
(
param_axis
<
0
)
?
(
param_axis
+
dims
)
:
param_axis
;
CHECK_LE
(
axis
,
4
)
<<
"Unsupport dims in mlu concat"
;
int
nhwc_axis
=
GetAxisNHWC2NCHW
<
int
>
(
dims
)[
axis
];
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
cnmlBaseOp_t
split_op
;
cnmlTensor_t
inputs
=
input_tensor
->
mlu_tensor
();
CNML_CALL
(
cnmlCreateNdSplitOp
(
&
split_op
,
nhwc_axis
,
&
inputs
,
1
,
output_tensor
.
data
(),
output_num
));
graph
->
FuseOp
(
split_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
split_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
split
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SplitConverter
);
lite/kernels/mlu/bridges/split_op_test.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/split_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
template
<
typename
dtype
>
void
split_ref
(
const
std
::
shared_ptr
<
operators
::
SplitOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
int
num
=
op_info
->
GetAttr
<
int
>
(
"num"
);
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
sections
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
std
::
vector
<
lite
::
Tensor
*>
output_vec
;
auto
output
=
op_info
->
Output
(
"Out"
);
for
(
auto
out_var
:
output
)
{
output_vec
.
push_back
(
scope
->
Var
(
out_var
)
->
GetMutable
<
Tensor
>
());
}
auto
in_dims
=
x
->
dims
();
auto
rank
=
in_dims
.
size
();
int
outs_number
=
output_vec
.
size
();
std
::
vector
<
lite
::
DDimLite
>
outs_dims
;
outs_dims
.
reserve
(
outs_number
);
if
(
axis
<
0
)
{
axis
+=
rank
;
}
if
(
num
>
0
)
{
int
out_axis_dim
=
in_dims
[
axis
]
/
num
;
for
(
int
i
=
0
;
i
<
outs_number
;
++
i
)
{
auto
dim
=
in_dims
;
dim
[
axis
]
=
out_axis_dim
;
outs_dims
.
push_back
(
dim
);
}
}
else
if
(
sections
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
outs_number
;
++
i
)
{
auto
dim
=
in_dims
;
dim
[
axis
]
=
sections
[
i
];
outs_dims
.
push_back
(
dim
);
}
}
for
(
int
j
=
0
;
j
<
outs_dims
.
size
();
++
j
)
{
output_vec
[
j
]
->
Resize
(
outs_dims
[
j
]);
}
const
dtype
*
din
=
x
->
mutable_data
<
const
dtype
>
();
std
::
vector
<
int
>
in_strides
(
in_dims
.
size
());
in_strides
[
in_dims
.
size
()
-
1
]
=
in_dims
[
in_dims
.
size
()
-
1
];
for
(
int
i
=
in_dims
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
in_strides
[
i
]
=
in_strides
[
i
+
1
]
*
in_dims
[
i
];
}
int
input_offset
=
0
;
for
(
auto
out
:
output_vec
)
{
auto
out_dim
=
out
->
dims
();
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
for
(
int
i
=
out_dim
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
out_strides
[
i
]
=
out_strides
[
i
+
1
]
*
out_dim
[
i
];
}
dtype
*
out_data
=
out
->
mutable_data
<
dtype
>
();
int
before
=
out_strides
[
0
]
/
out_strides
[
axis
];
int
in_after
=
in_strides
[
axis
];
int
out_after
=
out_strides
[
axis
];
for
(
int
i
=
0
;
i
<
before
;
++
i
)
{
std
::
memcpy
(
out_data
+
i
*
out_after
,
din
+
input_offset
+
i
*
in_after
,
sizeof
(
dtype
)
*
out_after
);
}
input_offset
+=
out_strides
[
axis
];
}
}
void
test_split
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
int
axis
,
int
num
,
std
::
vector
<
int
>
sections
)
{
// prepare input&output variables
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name_1
=
"out_1"
;
std
::
string
out_var_name_2
=
"out_2"
;
std
::
string
out_ref_var_name_1
=
"out_ref_1"
;
std
::
string
out_ref_var_name_2
=
"out_ref_2"
;
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_1
=
scope
.
Var
(
out_var_name_1
)
->
GetMutable
<
Tensor
>
();
auto
*
out_2
=
scope
.
Var
(
out_var_name_2
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref_1
=
scope
.
Var
(
out_ref_var_name_1
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref_2
=
scope
.
Var
(
out_ref_var_name_2
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
// initialize input&output data
FillTensor
<
float
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"split"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name_1
,
out_var_name_2
});
opdesc
.
SetAttr
(
"axis"
,
axis
);
opdesc
.
SetAttr
(
"sections"
,
sections
);
opdesc
.
SetAttr
(
"num"
,
num
);
auto
op
=
CreateOp
<
operators
::
SplitOp
>
(
opdesc
,
&
scope
);
split_ref
<
float
>
(
op
);
out_ref_1
->
CopyDataFrom
(
*
out_1
);
out_ref_2
->
CopyDataFrom
(
*
out_2
);
// execute reference implementation and save to output tensor
Tensor
input
;
input
.
Resize
({
bs
,
ic
,
ih
,
iw
});
transpose
<
float
>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
bs
),
static_cast
<
int
>
(
ic
),
static_cast
<
int
>
(
ih
),
static_cast
<
int
>
(
iw
)},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name_1
,
out_var_name_2
});
// compare results
auto
*
out_data_1
=
out_1
->
mutable_data
<
float
>
();
auto
*
out_data_2
=
out_2
->
mutable_data
<
float
>
();
auto
*
out_ref_data_1
=
out_ref_1
->
mutable_data
<
float
>
();
auto
*
out_ref_data_2
=
out_ref_2
->
mutable_data
<
float
>
();
Tensor
output1
,
output2
;
output1
.
Resize
(
out_1
->
dims
());
output2
.
Resize
(
out_2
->
dims
());
transpose
<
float
>
(
out_data_1
,
output1
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_1
->
dims
()[
0
]),
static_cast
<
int
>
(
out_1
->
dims
()[
2
]),
static_cast
<
int
>
(
out_1
->
dims
()[
3
]),
static_cast
<
int
>
(
out_1
->
dims
()[
1
])},
{
0
,
3
,
1
,
2
});
transpose
<
float
>
(
out_data_2
,
output2
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_2
->
dims
()[
0
]),
static_cast
<
int
>
(
out_2
->
dims
()[
2
]),
static_cast
<
int
>
(
out_2
->
dims
()[
3
]),
static_cast
<
int
>
(
out_2
->
dims
()[
1
])},
{
0
,
3
,
1
,
2
});
out_data_1
=
output1
.
mutable_data
<
float
>
();
out_data_2
=
output2
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_1
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data_1
[
i
],
out_ref_data_1
[
i
],
5e-4
);
}
for
(
int
i
=
0
;
i
<
out_2
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data_2
[
i
],
out_ref_data_2
[
i
],
5e-4
);
}
}
TEST
(
MLUBridges
,
split
)
{
test_split
(
4
,
2
,
3
,
1
,
0
,
2
,
{});
test_split
(
4
,
2
,
3
,
1
,
0
,
0
,
{
3
,
1
});
test_split
(
4
,
6
,
3
,
1
,
1
,
2
,
{});
test_split
(
4
,
6
,
3
,
1
,
1
,
0
,
{
2
,
4
});
test_split
(
4
,
2
,
2
,
1
,
2
,
2
,
{});
test_split
(
4
,
2
,
6
,
1
,
2
,
0
,
{
3
,
3
});
test_split
(
4
,
2
,
3
,
4
,
3
,
2
,
{});
test_split
(
4
,
2
,
3
,
6
,
3
,
0
,
{
5
,
1
});
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
lite/kernels/mlu/bridges/squeeze_op.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SqueezeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Create act node and set params from op
auto
fp_type
=
graph
->
FPType
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
output_dims_nhwc
=
DimNCHW2NHWC
(
output_dims
);
std
::
vector
<
int
>
o_dims
(
output_dims
.
size
());
std
::
transform
(
output_dims_nhwc
.
cbegin
(),
output_dims_nhwc
.
cend
(),
o_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlReshapeOpParam_t
param
;
cnmlBaseOp_t
squeeze_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
o_dims
.
data
(),
o_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze_op
));
if
(
op_type
==
"squeeze2"
)
{
auto
xshape_var_name
=
op_info
->
Output
(
"XShape"
).
front
();
auto
xshape
=
scope
->
FindVar
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
dims_64
=
xshape
->
dims
().
Vectorize
();
auto
dims_64_nhwc
=
DimNCHW2NHWC
(
dims_64
);
auto
xshape_tensor
=
graph
->
AddNode
(
xshape_var_name
,
dims_64
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
std
::
vector
<
int
>
xshape_dims
(
dims_64
.
size
());
std
::
transform
(
dims_64_nhwc
.
cbegin
(),
dims_64_nhwc
.
cend
(),
xshape_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlBaseOp_t
squeeze2_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
xshape_dims
.
data
(),
xshape_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze2_op
,
param
,
input_tensor
->
mlu_tensor
(),
xshape_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze2_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze2_op
));
}
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
lite/kernels/mlu/bridges/squeeze_op_test.cc
0 → 100644
浏览文件 @
55db1963
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/squeeze_op.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
// squeeze
TEST
(
MLUBridges
,
squeeze
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// SqueezeCompute squeeze;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
std
::
vector
<
int
>
axes
{
0
,
-
2
};
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
auto
x_data
=
out_ref
->
data
<
float
>
();
auto
out_data
=
out
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
// squeeze2
TEST
(
MLUBridges
,
squeeze2
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
xshape_var_name
(
"xshape"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
xshape
=
scope
.
Var
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
std
::
vector
<
int64_t
>
xshape_shape
({
1
,
3
,
1
,
5
});
xshape
->
Resize
(
xshape_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// Squeeze2Compute squeeze2;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze2"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetOutput
(
"XShape"
,
{
xshape_var_name
});
std
::
vector
<
int
>
axes
({
0
,
-
2
});
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
,
xshape_var_name
});
auto
x_data
=
out_ref
->
mutable_data
<
float
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
auto
xshape_data
=
xshape
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
EXPECT_NEAR
(
xshape_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录