// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/split_op.h" #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { template void split_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); int num = op_info->GetAttr("num"); int axis = op_info->GetAttr("axis"); std::vector sections = op_info->GetAttr>("sections"); std::vector output_vec; auto output = op_info->Output("Out"); for (auto out_var : output) { output_vec.push_back(scope->Var(out_var)->GetMutable()); } auto in_dims = x->dims(); auto rank = in_dims.size(); int outs_number = output_vec.size(); std::vector outs_dims; outs_dims.reserve(outs_number); if (axis < 0) { axis += rank; } if (num > 0) { int out_axis_dim = in_dims[axis] / num; for (int i = 0; i < outs_number; ++i) { auto dim = in_dims; dim[axis] = out_axis_dim; outs_dims.push_back(dim); } } else if (sections.size() > 0) { for (size_t i = 0; i < outs_number; ++i) { auto dim = in_dims; dim[axis] = sections[i]; outs_dims.push_back(dim); } } for (int j = 0; j < outs_dims.size(); ++j) { output_vec[j]->Resize(outs_dims[j]); } const dtype* din = x->mutable_data(); std::vector in_strides(in_dims.size()); in_strides[in_dims.size() - 1] = in_dims[in_dims.size() - 1]; for (int i = in_dims.size() - 2; i >= 0; --i) { in_strides[i] = in_strides[i + 1] * in_dims[i]; } int input_offset = 0; for (auto out : output_vec) { auto out_dim = out->dims(); std::vector out_strides(out_dim.size()); out_strides[out_dim.size() - 1] = out_dim[out_dim.size() - 1]; for (int i = out_dim.size() - 2; i >= 0; --i) { out_strides[i] = out_strides[i + 1] * out_dim[i]; } dtype* out_data = out->mutable_data(); int before = out_strides[0] / out_strides[axis]; int in_after = in_strides[axis]; int out_after = out_strides[axis]; for (int i = 0; i < before; ++i) { std::memcpy(out_data + i * out_after, din + input_offset + i * in_after, sizeof(dtype) * out_after); } input_offset += out_strides[axis]; } } void test_split(int bs, int ic, int ih, int iw, int axis, int num, std::vector sections) { // prepare input&output variables std::string x_var_name = "x"; std::string out_var_name_1 = "out_1"; std::string out_var_name_2 = "out_2"; std::string out_ref_var_name_1 = "out_ref_1"; std::string out_ref_var_name_2 = "out_ref_2"; Scope scope; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out_1 = scope.Var(out_var_name_1)->GetMutable(); auto* out_2 = scope.Var(out_var_name_2)->GetMutable(); auto* out_ref_1 = scope.Var(out_ref_var_name_1)->GetMutable(); auto* out_ref_2 = scope.Var(out_ref_var_name_2)->GetMutable(); x->Resize({bs, ic, ih, iw}); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("split"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name_1, out_var_name_2}); opdesc.SetAttr("axis", axis); opdesc.SetAttr("sections", sections); opdesc.SetAttr("num", num); auto op = CreateOp(opdesc, &scope); split_ref(op); out_ref_1->CopyDataFrom(*out_1); out_ref_2->CopyDataFrom(*out_2); // execute reference implementation and save to output tensor Tensor input; input.Resize({bs, ic, ih, iw}); transpose(x->mutable_data(), input.mutable_data(), {static_cast(bs), static_cast(ic), static_cast(ih), static_cast(iw)}, {0, 2, 3, 1}); x->CopyDataFrom(input); LaunchOp(op, {x_var_name}, {out_var_name_1, out_var_name_2}); // compare results auto* out_data_1 = out_1->mutable_data(); auto* out_data_2 = out_2->mutable_data(); auto* out_ref_data_1 = out_ref_1->mutable_data(); auto* out_ref_data_2 = out_ref_2->mutable_data(); Tensor output1, output2; output1.Resize(out_1->dims()); output2.Resize(out_2->dims()); transpose(out_data_1, output1.mutable_data(), {static_cast(out_1->dims()[0]), static_cast(out_1->dims()[2]), static_cast(out_1->dims()[3]), static_cast(out_1->dims()[1])}, {0, 3, 1, 2}); transpose(out_data_2, output2.mutable_data(), {static_cast(out_2->dims()[0]), static_cast(out_2->dims()[2]), static_cast(out_2->dims()[3]), static_cast(out_2->dims()[1])}, {0, 3, 1, 2}); out_data_1 = output1.mutable_data(); out_data_2 = output2.mutable_data(); for (int i = 0; i < out_1->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(out_data_1[i], out_ref_data_1[i], 5e-4); } for (int i = 0; i < out_2->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(out_data_2[i], out_ref_data_2[i], 5e-4); } } TEST(MLUBridges, split) { test_split(4, 2, 3, 1, 0, 2, {}); test_split(4, 2, 3, 1, 0, 0, {3, 1}); test_split(4, 6, 3, 1, 1, 2, {}); test_split(4, 6, 3, 1, 1, 0, {2, 4}); test_split(4, 2, 2, 1, 2, 2, {}); test_split(4, 2, 6, 1, 2, 0, {3, 3}); test_split(4, 2, 3, 4, 3, 2, {}); test_split(4, 2, 3, 6, 3, 0, {5, 1}); } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(split, kMLU);