conv_add_bn_kernel.cpp 3.1 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = false;
Z
zhangyang 已提交
25
  auto input = const_cast<Tensor *>(param->Input());
26
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
27
  auto bias = param->Bias();
Z
zhangyang 已提交
28
  auto bias_ptr = bias->data<float>();
Z
zhangyang 已提交
29
  auto filter = const_cast<Tensor *>(param->Filter());
H
hanbuhe 已提交
30

Z
zhangyang 已提交
31
  auto out = param->Output();
Z
zhangyang 已提交
32

Z
zhangyang 已提交
33 34 35 36 37
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
38
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0] &&
Z
zhangyang 已提交
39
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
40
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
41

Z
zhangyang 已提交
42
  const int channel = out->dims()[1];
Z
zhangyang 已提交
43
  auto bs_ptr =
H
hanbuhe 已提交
44
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
45 46
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
47 48 49 50
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
51 52 53 54
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
55 56
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
57 58 59 60
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

Z
zhangyang 已提交
61 62
  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
H
hanbuhe 已提交
63

Z
zhangyang 已提交
64 65 66 67
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
  fpga::format_ofm(out);
68 69 70 71 72 73 74

  fpga::WrapperConvArgs conv_arg;
  fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
                      param->Groups(), param->Strides()[0], param->Strides()[1],
                      param->Paddings()[0], param->Paddings()[1], bs_ptr);
  param->SetFpgaArgs(conv_arg);

Z
zhangyang 已提交
75 76 77 78
  return true;
}

template <>
Z
zhangyang 已提交
79
void ConvAddBNKernel<FPGA, float>::Compute(
N
nhzlx 已提交
80
    const FusionConvAddBNParam<FPGA> &param) const {
Z
zhangyang 已提交
81 82 83 84 85 86 87 88
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif