提交 a5042501 编写于 作者: H hanbuhe

change concat template

上级 7aa5c492
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "fpga/fpga_quantilization.h"
#include <algorithm>
namespace paddle_mobile {
namespace fpga {
template <typename Dtype>
static void chw_to_hwc(Dtype* data_in, Dtype* data_out, int num, int channel,
int height, int width) {
int offset_height = 0;
for (int n = 0; n < num; n++) {
int amount_per_row = width * channel;
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; h++) {
int offset_height = h * amount_per_row;
for (int w = 0; w < width; w++) {
*(data_out + offset_height + w * channel + c) = *(data_in++);
}
}
}
data_out += num;
}
}
template <typename Dtype>
framework::Tensor* quantilize_filter(framework::Tensor* filter) {
float scale = 0;
float max = 0f;
const int batch_size = filter->dims()[0];
const int channel = filter->dims()[1];
const int height = filter->dims()[2];
const int width = filter->dims()[3];
// 32bit filter -> 8bit filter;
if (filter->type() == typeid(float)) {
float* float_data = filter->data<float>();
for (int i = 0; i < filter->numel(); ++i) {
max = std::max(max, float_data[i]);
}
float fix_range = static_cast<float>((1 << (8 - 1)) - 1);
float float_range = max;
scale = (float_range / fix_range);
framework::Tensor* filter = filter;
framework::Tensor* quant_filter = new framework::Tensor();
int8_t* temp = new int8_t[filter->numel()];
int8_t* int_data = quant_filter->mutable_data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
temp[i] = (int8_t)float_data[i] * scale;
}
quant_filter.scale = scale;
// NCHW -> NHWC;
chw_to_hwc<int8_t>(temp, int_data, in_batch_size, channel, height, width);
return quantFilter;
} else if (filter->type() == typeid(int8_t)) {
// model is already quantilized
int8_t* int_data = filter->data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
max = std::max(max, int_data[i]);
}
}
return filter;
}
} // namespace fpga
} // namespace paddle_mobile
......@@ -18,35 +18,13 @@ limitations under the License. */
#include "framework/tensor.h"
namespace paddle_mobile {
namespace fpga {
template <typename Dtype>
framework::Tensor* quantilize_filter(framework::Tensor* filter) {
float scale = 0;
// 32bit filter -> 8bit filter;
float min = 0f;
float max = 0f;
if (filter->type() == typeid(float)) {
float* floatData = originalFilter->data<float>();
for (int i = 0; i < filter->numel(); ++i) {
min = std::min(min, floatData[i]);
max = std::max(max, floatData[i]);
}
float fix_range = (float)((1 << (8 - 1)) - 1);
float float_range = max;
scale = (float_range / fix_range);
framework::Tensor* originalFilter = filter;
framework::Tensor* quantFilter = new framework::Tensor();
int8_t* intData = quantFilter->mutable_data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
intData[i] = (int8_t)floatData[i] * scale;
}
quantFilter.scale = scale;
// NCHW -> NHWC;
return quantFilter;
}
return filter;
}
static void chw_to_hwc(Dtype* data_in, Dtype* data_out, int num, int channel,
int height, int width);
template <typename Dtype>
framework::Tensor* quantilize_filter(framework::Tensor* filter);
} // namespace fpga
} // namespace paddle_mobile
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_add_bn_kernel.h"
#include "fpga/api/fpga_api.h"
#include "fpga/quantilization.h"
namespace paddle_mobile {
namespace operators {
......@@ -28,7 +29,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
const Tensor *bias = param->Bias();
auto bias_ptr = bias->data<float>();
const Tensor *filter = param->Filter();
auto filter_ptr = filter->data<float>();
Tensor *out = param->Output();
auto out_ptr = out->mutable_data<half>();
auto bn_mean_ptr = param->InputMean()->data<float>();
......@@ -41,7 +42,8 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
"Image channel should be equal to bias number");
const int channel = input->dims()[1];
float *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
float *bs_ptr =
reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({channel});
......@@ -58,26 +60,33 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
const Tensor *quant_filter = quantilize_filter(filter);
// delete original filter?
filter = quant_filter;
auto filter_ptr = filter->data<float>();
fpga::ConvArgs convArgs;
convArgs.relu_enabled = relu_enabled;
convArgs.filter_address = (void *)filter_ptr;
convArgs.filter_address = reinterpret_cast<void *> filter_ptr;
convArgs.filter_num = filter->dims()[0];
convArgs.group_num = param->Groups();
convArgs.sb_address = (void *)bs_ptr;
convArgs.sb_address = reinterpret_cast<void *> bs_ptr;
convArgs.kernel.stride_h = param->Strides()[0];
convArgs.kernel.stride_w = param->Strides()[1];
convArgs.kernel.height = filter->dims()[2];
convArgs.kernel.width = filter->dims()[3];
convArgs.image.address = (void *)input_ptr;
convArgs.image.address = reinterpret_cast<void *> input_ptr;
convArgs.image.channels = input->dims()[1];
convArgs.image.height = input->dims()[2];
convArgs.image.width = input->dims()[3];
convArgs.image.pad_height = param->Paddings()[0];
convArgs.image.pad_width = param->Paddings()[1];
convArgs.image.scale_address = input->fpga_args().scale_pointer();
convArgs.output.address = (void *)out_ptr;
convArgs.output.address = reinterpret_cast<void *> out_ptr;
convArgs.output.scale_address = out->fpga_args().scale_pointer();
param->SetFpgaArgs(convArgs);
return true;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册