activation_image_compute.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28 29 30
class ReluComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                  PRECISION(kFP16),
                                                  DATALAYOUT(kImageDefault)> {
31 32 33 34
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
35
    return "Relu using cl::Image2D(ImageDefault/RGBA), kFP16";
36
  }
37

38 39 40
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
41
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
42 43 44 45 46
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
47
    auto* x_img = param.X->data<half_t, cl::Image2D>();
48
    auto image_shape = InitImageDimInfoWith(x_dims);
49
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
50 51
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
52 53 54 55 56 57 58 59

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
60
    cl_int status = kernel.setArg(arg_idx, *x_img);
61
    CL_CHECK_FATAL(status);
62
    status = kernel.setArg(++arg_idx, *out_img);
63 64
    CL_CHECK_FATAL(status);

65 66 67 68 69 70 71 72 73 74 75 76
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
77 78 79 80 81 82 83 84
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
85
    context.cl_wait_list()->emplace(out_img, event_);
86 87 88
  }

 private:
89 90
  std::string kernel_func_name_{"relu"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU"};
91 92 93
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

94 95 96
class Relu6ComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
97 98 99 100
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
101
    return "Relu6 using cl::Image2D(ImageDefault/RGBA), kFP16";
102 103 104 105 106
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
107
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
108 109 110 111 112
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
113
    auto* x_img = param.X->data<half_t, cl::Image2D>();
114
    auto image_shape = InitImageDimInfoWith(x_dims);
115
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
116 117
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
118
    auto threshold = param.Relu_clipped_coef;
119 120 121 122 123 124 125 126

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
127
    cl_int status = kernel.setArg(arg_idx, *x_img);
128
    CL_CHECK_FATAL(status);
129
    status = kernel.setArg(++arg_idx, *out_img);
130
    CL_CHECK_FATAL(status);
131 132
    status = kernel.setArg(++arg_idx, threshold);
    CL_CHECK_FATAL(status);
133 134 135 136 137 138 139 140 141

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
142
    VLOG(4) << "threshold:" << threshold;
143 144 145 146 147 148 149 150 151 152 153 154

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
155
    context.cl_wait_list()->emplace(out_img, event_);
156 157 158
  }

 private:
159 160
  std::string kernel_func_name_{"relu6"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU6"};
161 162 163
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

164
class SigmoidComputeImageDefault
165 166 167 168 169 170 171 172 173 174 175 176 177
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
    return "Sigmoid using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
178
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
179 180 181 182 183
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
184
    auto* x_img =
185 186
        param.X->data<half_t,
                      cl::Image2D>();  // use half_t represents half float
187
    auto image_shape = InitImageDimInfoWith(x_dims);
188
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(  // use half_t
189 190 191
        // represents half float
        image_shape["width"],
        image_shape["height"]);
192 193 194 195 196 197 198 199 200
    const auto& y_dims = param.Out->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
201
    cl_int status = kernel.setArg(arg_idx, *x_img);
202
    CL_CHECK_FATAL(status);
203
    status = kernel.setArg(++arg_idx, *out_img);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
226
    context.cl_wait_list()->emplace(out_img, event_);
227 228 229 230 231 232 233 234 235 236 237 238 239
  }

 private:
  std::string kernel_func_name_{"sigmoid"};
  std::string build_options_{"-DCL_DTYPE_half -DSIGMOID"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

240 241 242 243 244 245 246
// Relu
REGISTER_LITE_KERNEL(relu,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReluComputeImageDefault,
                     ImageDefault)
247 248
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
249
                                      PRECISION(kFP16),
250 251 252
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
REGISTER_LITE_KERNEL(relu6,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::Relu6ComputeImageDefault,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
271 272 273
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

274 275 276 277 278 279 280
// Sigmoid
REGISTER_LITE_KERNEL(sigmoid,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::SigmoidComputeImageDefault,
                     ImageDefault)
281 282 283 284 285 286 287 288 289
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();