activation_image_compute.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

27 28 29
class ReluComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                  PRECISION(kFP16),
                                                  DATALAYOUT(kImageDefault)> {
30 31 32 33
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
34
    return "Relu using cl::Image2D(ImageDefault/RGBA), kFP16";
35
  }
36

37 38 39
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
40
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
41 42 43 44 45
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
46 47 48 49 50
    auto* x_buf = param.X->data<uint16_t, cl::Image2D>();
    auto image_shape = InitImageDimInfoWith(x_dims);
    auto* out_buf = param.Out->mutable_data<uint16_t, cl::Image2D>(
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
51 52 53 54 55 56 57 58 59 60 61 62 63

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

64 65 66 67 68 69 70 71 72 73 74 75
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
76 77 78 79 80 81 82 83
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
84 85 86
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
87 88 89
  }

 private:
90 91
  std::string kernel_func_name_{"relu"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU"};
92 93 94
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

95 96 97
class Relu6ComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
98 99 100 101
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
102
    return "Relu6 using cl::Image2D(ImageDefault/RGBA), kFP16";
103 104 105 106 107
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
108
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
109 110 111 112 113
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
114
    auto* x_buf = param.X->data<uint16_t, cl::Image2D>();
115
    auto image_shape = InitImageDimInfoWith(x_dims);
116
    auto* out_buf = param.Out->mutable_data<uint16_t, cl::Image2D>(
117 118
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
119
    auto threshold = param.Relu_clipped_coef;
120 121 122 123 124 125 126 127 128 129 130 131

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
132 133
    status = kernel.setArg(++arg_idx, threshold);
    CL_CHECK_FATAL(status);
134 135 136 137 138 139 140 141 142

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
143
    VLOG(4) << "threshold:" << threshold;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
162 163
  std::string kernel_func_name_{"relu6"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU6"};
164 165 166
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

167
class SigmoidComputeImageDefault
168 169 170 171 172 173 174 175 176 177 178 179 180
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
    return "Sigmoid using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
181
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
182 183 184 185 186 187
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    auto* x_buf =
188 189
        param.X->data<uint16_t,
                      cl::Image2D>();  // use uint16_t represents half float
190 191
    auto image_shape = InitImageDimInfoWith(x_dims);
    auto* out_buf =
192 193
        param.Out->mutable_data<uint16_t, cl::Image2D>(  // use uint16_t
            // represents half float
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            image_shape["width"],
            image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
  std::string kernel_func_name_{"sigmoid"};
  std::string build_options_{"-DCL_DTYPE_half -DSIGMOID"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

246 247 248 249 250 251 252
// Relu
REGISTER_LITE_KERNEL(relu,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReluComputeImageDefault,
                     ImageDefault)
253 254
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
255
                                      PRECISION(kFP16),
256 257 258
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
REGISTER_LITE_KERNEL(relu6,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::Relu6ComputeImageDefault,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
277 278 279
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

280 281 282 283 284 285 286
// Sigmoid
REGISTER_LITE_KERNEL(sigmoid,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::SigmoidComputeImageDefault,
                     ImageDefault)
287 288 289 290 291 292 293 294 295
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();