conv_bn_relu_kernel.cpp 3.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = true;
Z
zhangyang 已提交
25
  auto input = const_cast<Tensor *>(param->Input());
26
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
27 28
  auto filter = const_cast<Tensor *>(param->Filter());
  auto out = param->Output();
Z
zhangyang 已提交
29 30 31 32 33
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
34 35 36
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
  const int channel = out->dims()[1];
Z
zhangyang 已提交
37 38 39
  auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
40 41 42 43 44 45
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
46
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
47 48
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
49 50 51
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
52 53 54

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
55
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
56

Z
zhangyang 已提交
57
  int element_num_per_div =
58
      fpga::get_element_num_per_div(filter, param->Groups());
Z
zhangyang 已提交
59 60
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

61 62
  fpga::format_ofm(out);
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
  fpga::WrapperConvArgs convArgs;
  convArgs.group_num = (uint32_t)param->Groups();
  convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
  convArgs.filter_num = (uint32_t)filter->dims()[0];
  convArgs.output.address = out_ptr;
  convArgs.output.scale_address = out->scale;
  convArgs.conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(
      convArgs.split_num * sizeof(fpga::ConvArgs));
  param->SetFpgaArgs(convArgs);

  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  fpga::WrapperConvArgs conv_arg;
78 79 80 81
  fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
                      param->Groups(), param->Strides()[0], param->Strides()[1],
                      param->Paddings()[0], param->Paddings()[1], bs_ptr);
  param->SetFpgaArgs(conv_arg);
Z
zhangyang 已提交
82 83 84 85 86
  return true;
}

template <>
void ConvBNReluKernel<FPGA, float>::Compute(
N
nhzlx 已提交
87
    const FusionConvBNReluParam<FPGA> &param) const {
Z
zhangyang 已提交
88 89
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
90
template class ConvBNReluKernel<FPGA, float>;
Z
zhangyang 已提交
91 92 93 94 95

}  // namespace operators
}  // namespace paddle_mobile

#endif