conv_bn_relu_kernel.cpp 4.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = true;
Z
zhangyang 已提交
25
  Tensor *input = const_cast<Tensor *>(param->Input());
26
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
27
  Tensor *filter = const_cast<Tensor *>(param->Filter());
Z
zhangyang 已提交
28 29 30 31 32 33
  Tensor *out = param->Output();
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
34 35 36
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
  const int channel = out->dims()[1];
Z
zhangyang 已提交
37 38 39 40 41 42 43 44 45
  float *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
46
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
47 48
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
49 50 51
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
52 53 54

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
55
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
56

Z
zhangyang 已提交
57 58 59 60 61
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
62
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
63

Z
zhangyang 已提交
64 65 66 67 68
  fpga::WrapperConvArgs convArgs;
  convArgs.group_num = (uint32_t)param->Groups();
  convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
  convArgs.filter_num = (uint32_t)filter->dims()[0];
  convArgs.output.address = out_ptr;
Z
zhangyang 已提交
69
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
70 71
  convArgs.args = (fpga::ConvArgs *)fpga::fpga_malloc(convArgs.split_num *
                                                      sizeof(fpga::ConvArgs));
Z
zhangyang 已提交
72
  param->SetFpgaArgs(convArgs);
Z
zhangyang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  int n = convArgs.split_num;
  for (int i = 0; i < n; i++) {
    convArgs.args[i].relu_enabled = relu_enabled;
    convArgs.args[i].group_num = (uint32_t)param->Groups();
    convArgs.args[i].kernel.stride_h = (uint32_t)param->Strides()[0];
    convArgs.args[i].kernel.stride_w = (uint32_t)param->Strides()[1];
    convArgs.args[i].kernel.height = (uint32_t)filter->dims()[2];
    convArgs.args[i].kernel.width = (uint32_t)filter->dims()[3];
    convArgs.args[i].image.address = input_ptr;
    convArgs.args[i].image.channels = (uint32_t)input->dims()[1];
    convArgs.args[i].image.height = (uint32_t)input->dims()[2];
    convArgs.args[i].image.width = (uint32_t)input->dims()[3];
    convArgs.args[i].image.pad_height = (uint32_t)param->Paddings()[0];
    convArgs.args[i].image.pad_width = (uint32_t)param->Paddings()[1];
    convArgs.args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
    convArgs.args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
    convArgs.args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
                                    channel - (n - 1) * element_num_per_div)
                              : element_num_per_div);
    convArgs.args[i].image.scale_address =
        (float *)fpga::fpga_malloc(2 * sizeof(float));
  }
Z
zhangyang 已提交
100 101 102 103 104
  return true;
}

template <>
void ConvBNReluKernel<FPGA, float>::Compute(
N
nhzlx 已提交
105
    const FusionConvBNReluParam<FPGA> &param) const {
Z
zhangyang 已提交
106 107 108 109 110 111 112 113
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNReluKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif