math_function.cpp 5.7 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/math_function.h"
xiebaiyuan's avatar
xiebaiyuan 已提交
16
#include <cstring>
Z
zhaojiaying01 已提交
17
#include "operators/math/gemm.h"
朔-望's avatar
朔-望 已提交
18 19

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
20 21 22
namespace operators {
namespace math {

朔-望's avatar
朔-望 已提交
23
template <>
朔-望's avatar
朔-望 已提交
24
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
朔-望's avatar
朔-望 已提交
25
                   const framework::Tensor &matrix_b, bool trans_b, float alpha,
26 27
                   framework::Tensor *matrix_out, float beta, bool relu,
                   float *bias) {
28 29 30
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
31 32 33
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
      "The input and output of matmul be matrix");
34 35 36

  int M = dim_out[0];
  int N = dim_out[1];
37
  int K = (!trans_a) ? dim_a[1] : dim_a[0];
38

Y
yangfei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
  if (trans_a) {
    int numel = matrix_a.numel();
    int m = matrix_a.dims()[0];
    int n = matrix_a.dims()[1];
    float *tmp = (float *)(matrix_a.data<float>());
    float *a = static_cast<float *>(
        paddle_mobile::memory::Alloc(sizeof(float) * numel));
    int index = 0;
    for (int j = 0; j < n; j++) {
      for (int i = 0; i < m; i++) {
        a[index++] = tmp[i * n + j];
      }
    }
52
#ifdef _OPENMP
Y
yangfei 已提交
53 54
    Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
              matrix_out->data<float>(), N, relu, bias);
55
#else
Y
yangfei 已提交
56 57
    Sgemm(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
          matrix_out->data<float>(), N, relu, bias);
58
#endif
Y
yangfei 已提交
59 60 61 62 63 64 65 66 67
  } else {
#ifdef _OPENMP
    Sgemm_omp(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
              N, beta, matrix_out->data<float>(), N, relu, bias);
#else
    Sgemm(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
          beta, matrix_out->data<float>(), N, relu, bias);
#endif
  }
68
}
朔-望's avatar
朔-望 已提交
69

朔-望's avatar
朔-望 已提交
70
template <>
71 72 73 74
void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
                         const framework::Tensor &matrix_b, bool trans_b,
                         float alpha, framework::Tensor *matrix_out, float beta,
                         bool relu, framework::Tensor *new_scale,
Y
yangfei 已提交
75
                         framework::Tensor *new_bias, int group, float *bias) {
76 77 78
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
79 80 81
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
      "The input and output of matmul be matrix");
82 83 84

  int M = dim_out[0];
  int N = dim_out[1];
85 86
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

87 88 89 90
#ifdef _OPENMP
  SgemmWithBn_omp(M, N, K, alpha, matrix_a.data<float>(), K,
                  matrix_b.data<float>(), N, beta, matrix_out->data<float>(), N,
                  relu, new_scale->data<float>() + group,
Y
yangfei 已提交
91
                  new_bias->data<float>() + group, bias);
92
#else
Z
zhaojiaying01 已提交
93 94
  SgemmWithBn(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
              N, beta, matrix_out->data<float>(), N, relu,
Y
yangfei 已提交
95 96
              new_scale->data<float>() + group, new_bias->data<float>() + group,
              bias);
97 98
#endif
}
99 100 101 102 103 104 105
void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
                     const framework::Tensor &matrix_b, bool trans_b,
                     framework::Tensor *matrix_out, float *p, std::string mode,
                     float *bias, float *bias1) {
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
106 107 108
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
      "The input and output of matmul be matrix");
109 110 111 112 113 114

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

#ifdef _OPENMP
115 116
  SgemmWithPRelu_omp(M, N, K, matrix_a.data<float>(), K, matrix_b.data<float>(),
                     N, matrix_out->data<float>(), N, p, mode, bias, bias1);
117 118 119 120 121 122
#else
  SgemmWithPRelu(M, N, K, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
                 matrix_out->data<float>(), N, p, mode, bias, bias1);

#endif
}
朔-望's avatar
朔-望 已提交
123

xiebaiyuan's avatar
xiebaiyuan 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename T>
struct ClearTensor<CPU, T> {
  void operator()(framework::Tensor *tensor) {
    auto size = tensor->numel();
    auto *tensor_data = tensor->data<float>();
    memset((void *)tensor_data, 0, sizeof(T) * size);
  }
};

template <typename T>
struct RowwiseAdd<CPU, T> {
  void operator()(const framework::Tensor &input,
                  const framework::Tensor &vector, framework::Tensor *output) {
    auto in_dims = input.dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_MOBILE_ENFORCE((vector.numel() == size),
                          "vector.numel() must be equal to size.");
    PADDLE_MOBILE_ENFORCE((output->dims() == in_dims),
                          "output->dims() must be equal to in_dims.");

    auto *input_data = input.data<float>();
    auto *out_data = output->data<float>();
    auto *vec_data = vector.data<float>();
    for (int64_t i = 0; i < in_dims[0]; ++i) {
      for (int64_t j = 0; j < size; ++j) {
        out_data[i * size + j] = input_data[i * size + j] + vec_data[j];
      }
    }
  }
};

template struct RowwiseAdd<CPU, float>;
template struct ClearTensor<CPU, float>;

朔-望's avatar
朔-望 已提交
158 159 160
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile