interpolate_op.cc 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
Y
Yan Chunwei 已提交
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33 34 35
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
Y
Yan Chunwei 已提交
36 37 38 39
  auto x_dims = x->dims();
  auto x_h = x_dims[2];
  auto x_w = x_dims[3];
  CHECK_EQ(x_dims.size(), 4);
40
  auto out_name = op_info->Output("Out").front();
Y
Yan Chunwei 已提交
41 42 43 44
  auto scale = op_info->GetAttr<float>("scale");
  auto out_w = op_info->GetAttr<int>("out_w");
  auto out_h = op_info->GetAttr<int>("out_h");
  auto align_corners = op_info->GetAttr<bool>("align_corners");
45 46
  int align_mode =
      op_info->HasAttr("align_mode") ? op_info->GetAttr<int>("align_mode") : 1;
47
  auto interp_method = op_info->GetAttr<std::string>("interp_method");
48 49 50 51 52 53
  if (align_mode == 0 && !align_corners) {
    LOG(WARNING) << "[NPU] align_mode = 0 && "
                    "align_corners = false isn't "
                    "supported in HiAI DDK";
    return FAILED;
  }
Y
Yan Chunwei 已提交
54

55
  // X node
56 57 58
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
59
  } else {
60
    x_node = graph->Add(x_name, *x);
61 62
  }

63
  // Priority: OutSize > scale > out_h/out_w
Y
Yan Chunwei 已提交
64 65 66 67 68 69 70
  if (scale > 0) {
    out_h = static_cast<int>(x_h * scale);
    out_w = static_cast<int>(x_w * scale);
    out_h = out_h > 0 ? out_h : -1;
    out_w = out_w > 0 ? out_w : -1;
  }

71
  // Update out_h and out_w and create out_size node if has OutSize
72
  std::shared_ptr<Node> out_size_node = nullptr;
73
  if (HasInputArg(op_info, scope, "OutSize")) {
74
    auto out_size_name = op_info->Input("OutSize").front();
75 76
    if (graph->Has(out_size_name)) {
      out_size_node = graph->Get(out_size_name);
77
    } else {
78
      auto out_size = scope->FindMutableTensor(out_size_name);
79
      CHECK_EQ(out_size->numel(), 2);
80
      CHECK(out_size->persistable());
Y
Yan Chunwei 已提交
81
      auto out_size_data = out_size->mutable_data<int>();
82
      // Update out_h and out_w if has OutSize
Y
Yan Chunwei 已提交
83 84
      out_h = out_size_data[0];
      out_w = out_size_data[1];
85 86
    }
  }
87 88
  if (out_size_node == nullptr) {
    if (interp_method == "bilinear") {
89 90
      const float largest_multiple = 7.0f;
      float multiple = static_cast<float>(x_h * x_w) / (out_h * out_w);
91 92 93 94 95 96
      if (multiple >= largest_multiple) {
        LOG(WARNING) << "[NPU] multiple=(ih*iw)/(oh*ow)=" << multiple
                     << " is too large, should not exceed " << largest_multiple
                     << " in HiAI DDK";
        return FAILED;
      }
Y
Yan Chunwei 已提交
97
    }
98 99
    out_size_node =
        graph->Add(out_name + "/out_size", std::vector<int>({out_h, out_w}));
100 101 102
  }

  if (interp_method == "bilinear") {
103 104 105 106 107 108
    auto bilinear_interp_node = graph->Add<ge::op::ResizeBilinear>(out_name);
    auto bilinear_interp_op =
        bilinear_interp_node->data<ge::op::ResizeBilinear>();
    bilinear_interp_op->set_input_x(*x_node->data());
    bilinear_interp_op->set_input_size(*out_size_node->data());
    bilinear_interp_op->set_attr_align_corners(align_corners);
109
  } else if (interp_method == "nearest") {
110
    auto nearest_interp_node =
111 112 113 114 115 116
        graph->Add<ge::op::ResizeNearestNeighbor>(out_name);
    auto nearest_interp_op =
        nearest_interp_node->data<ge::op::ResizeNearestNeighbor>();
    nearest_interp_op->set_input_image(*x_node->data());
    nearest_interp_op->set_input_size(*out_size_node->data());
    nearest_interp_op->set_attr_align_corners(align_corners);
117
  } else {
118 119
    LOG(WARNING) << "[NPU] Unsupported interpolate method: " << interp_method;
    return FAILED;
Y
Yan Chunwei 已提交
120
  }
121
  return REBUILD_WHEN_SHAPE_CHANGED;
Y
Yan Chunwei 已提交
122 123 124
}

}  // namespace npu
125
}  // namespace subgraph
Y
Yan Chunwei 已提交
126 127 128
}  // namespace lite
}  // namespace paddle

129 130
REGISTER_SUBGRAPH_BRIDGE(bilinear_interp,
                         kNPU,
131
                         paddle::lite::subgraph::npu::InterpolateConverter);
132 133
REGISTER_SUBGRAPH_BRIDGE(nearest_interp,
                         kNPU,
134
                         paddle::lite::subgraph::npu::InterpolateConverter);