interpolate_op.cc 5.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
Y
Yan Chunwei 已提交
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33 34 35 36 37 38
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
Y
Yan Chunwei 已提交
39 40 41 42
  auto x_dims = x->dims();
  auto x_h = x_dims[2];
  auto x_w = x_dims[3];
  CHECK_EQ(x_dims.size(), 4);
43 44 45 46
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
Y
Yan Chunwei 已提交
47 48 49 50 51
  auto scale = op_info->GetAttr<float>("scale");
  auto out_w = op_info->GetAttr<int>("out_w");
  auto out_h = op_info->GetAttr<int>("out_h");
  auto align_corners = op_info->GetAttr<bool>("align_corners");
  int align_mode = op_info->GetAttr<int>("align_mode");
52
  auto interp_method = op_info->GetAttr<std::string>("interp_method");
53 54 55
  CHECK(!(align_mode == 0 && !align_corners)) << "[NPU] align_mode = 0 && "
                                                 "align_corners = false isn't "
                                                 "supported in HiAI DDK";
Y
Yan Chunwei 已提交
56

57
  // X node
58 59 60
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
61
  } else {
62
    x_node = graph->Add(x_name, *x);
63 64
  }

65
  // Priority: OutSize > scale > out_h/out_w
Y
Yan Chunwei 已提交
66 67 68 69 70 71 72
  if (scale > 0) {
    out_h = static_cast<int>(x_h * scale);
    out_w = static_cast<int>(x_w * scale);
    out_h = out_h > 0 ? out_h : -1;
    out_w = out_w > 0 ? out_w : -1;
  }

73
  // Update out_h and out_w and create out_size node if has OutSize
74
  std::shared_ptr<Node> out_size_node = nullptr;
75
  if (HasInputArg(op_info, scope, "OutSize")) {
76 77 78 79
    auto out_size_name = op_info->Input("OutSize").front();
    auto out_size_type = kernel->GetInputDeclType("OutSize");
    CHECK(out_size_type->precision() == PRECISION(kInt32));
    CHECK(out_size_type->layout() == DATALAYOUT(kNCHW));
80 81
    if (graph->Has(out_size_name)) {
      out_size_node = graph->Get(out_size_name);
82
    } else {
83
      auto out_size = scope->FindMutableTensor(out_size_name);
84
      CHECK_EQ(out_size->numel(), 2);
85
      CHECK(out_size->persistable());
Y
Yan Chunwei 已提交
86
      auto out_size_data = out_size->mutable_data<int>();
87
      // Update out_h and out_w if has OutSize
Y
Yan Chunwei 已提交
88 89
      out_h = out_size_data[0];
      out_w = out_size_data[1];
90 91
    }
  }
92 93
  if (out_size_node == nullptr) {
    if (interp_method == "bilinear") {
94 95 96
      const float largest_multiple = 7.0f;
      float multiple = static_cast<float>(x_h * x_w) / (out_h * out_w);
      CHECK_LT(multiple, largest_multiple)
97
          << "[NPU] multiple=(ih*iw)/(oh*ow)=" << multiple
98
          << " is too large, should not exceed " << largest_multiple
99
          << " in HiAI DDK";
Y
Yan Chunwei 已提交
100
    }
101 102
    out_size_node =
        graph->Add(out_name + "/out_size", std::vector<int>({out_h, out_w}));
103 104 105
  }

  if (interp_method == "bilinear") {
106 107 108 109 110 111
    auto bilinear_interp_node = graph->Add<ge::op::ResizeBilinear>(out_name);
    auto bilinear_interp_op =
        bilinear_interp_node->data<ge::op::ResizeBilinear>();
    bilinear_interp_op->set_input_x(*x_node->data());
    bilinear_interp_op->set_input_size(*out_size_node->data());
    bilinear_interp_op->set_attr_align_corners(align_corners);
112
  } else if (interp_method == "nearest") {
113
    auto nearest_interp_node =
114 115 116 117 118 119
        graph->Add<ge::op::ResizeNearestNeighbor>(out_name);
    auto nearest_interp_op =
        nearest_interp_node->data<ge::op::ResizeNearestNeighbor>();
    nearest_interp_op->set_input_image(*x_node->data());
    nearest_interp_op->set_input_size(*out_size_node->data());
    nearest_interp_op->set_attr_align_corners(align_corners);
120
  } else {
121 122
    LOG(WARNING) << "[NPU] Unsupported interpolate method: " << interp_method;
    return FAILED;
Y
Yan Chunwei 已提交
123
  }
124
  return REBUILD_WHEN_SHAPE_CHANGED;
Y
Yan Chunwei 已提交
125 126 127
}

}  // namespace npu
128
}  // namespace subgraph
Y
Yan Chunwei 已提交
129 130 131
}  // namespace lite
}  // namespace paddle

132 133
REGISTER_SUBGRAPH_BRIDGE(bilinear_interp,
                         kNPU,
134
                         paddle::lite::subgraph::npu::InterpolateConverter);
135 136
REGISTER_SUBGRAPH_BRIDGE(nearest_interp,
                         kNPU,
137
                         paddle::lite::subgraph::npu::InterpolateConverter);