Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c1837d76
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c1837d76
编写于
11月 14, 2019
作者:
H
hong19860320
提交者:
GitHub
11月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][NPU] Upgrade HiAI DDK from 300 to 310 (#2423)
上级
94731268
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
73 addition
and
212 deletion
+73
-212
lite/backends/npu/builder.h
lite/backends/npu/builder.h
+0
-111
lite/kernels/npu/bridges/conv_transpose_op.cc
lite/kernels/npu/bridges/conv_transpose_op.cc
+0
-1
lite/kernels/npu/bridges/interpolate_op.cc
lite/kernels/npu/bridges/interpolate_op.cc
+29
-41
lite/kernels/npu/bridges/mul_op.cc
lite/kernels/npu/bridges/mul_op.cc
+42
-57
lite/tools/build_npu.sh
lite/tools/build_npu.sh
+2
-2
未找到文件。
lite/backends/npu/builder.h
浏览文件 @
c1837d76
...
...
@@ -31,117 +31,6 @@
// Extended Ops of HIAI DDK
namespace
ge
{
/**
* Multiply the matrix x1 by the matrix x2 to generate x1 * x2.
* The inputs must be two-dimensional matrices and the inner dimension of "x1"
* (after being transposed if transpose_x1 is true) must match the outer
* dimension of "x2" (after being transposed if transposed_x2 is true). <Input>
* x : the first input tensor, must be non const op.
* w : the second input tensor, must be const op.
* bias: the optional bias tensor, must be const op.
* <Output>
* y : the output tensor.
* <Attr>
* has_bias: If true, enable input bias.
*/
REG_OP
(
MatMul
)
.
INPUT
(
x
,
TensorType
({
DT_FLOAT
}))
.
INPUT
(
w
,
TensorType
({
DT_FLOAT
}))
.
OPTIONAL_INPUT
(
bias
,
TensorType
({
DT_FLOAT
}))
// bias must be const input
.
OUTPUT
(
y
,
TensorType
({
DT_FLOAT
}))
.
ATTR
(
has_bias
,
AttrValue
::
BOOL
{
false
})
// when has input::bias,set true
.
OP_END
();
/**
* Computes the gradients of convolution with respect to the input.
* <Input>
* input_sizes : An integer vector representing the shape of input,
* where input is a 4-D [batch, height, width, channels] tensor.
* filter : the filter tensor, with shape [H , W, filter_channel,
* filter_number], filter_channel must be same as x channel.
* x : The input tensor.
* <Output>
* y : The output tensor.
* <Attr>
* format: 0: NCHW. 1: NHWC
* group : 1: default
* num_output : 0: default, num_output must be equal to
* (filter_channel * group)
* pad : Padding for the beginning and ending along each axis
* stride : Stride along each axis.
* dilation : dilation value along each axis of the filter.
* pad_mode : 0:NOTSET, 5:VALID 6:SAME. defaul value is 0:NOTSET
* bias_term : 0: default
* kernel : The shape of the convolution kernel
*/
REG_OP
(
Deconvolution
)
.
INPUT
(
input_sizes
,
TensorType
({
DT_UINT8
}))
.
INPUT
(
filter
,
TensorType
({
DT_FLOAT
}))
.
INPUT
(
x
,
TensorType
({
DT_FLOAT
}))
.
OPTIONAL_INPUT
(
b
,
TensorType
({
DT_FLOAT
}))
.
OUTPUT
(
y
,
TensorType
({
DT_FLOAT
}))
.
ATTR
(
mode
,
AttrValue
::
INT
{
1
})
.
ATTR
(
format
,
AttrValue
::
INT
{
1
})
.
ATTR
(
group
,
AttrValue
::
INT
{
1
})
.
ATTR
(
num_output
,
AttrValue
::
INT
{
0
})
.
ATTR
(
pad
,
AttrValue
::
LIST_INT
({
0
,
0
,
0
,
0
}))
.
ATTR
(
stride
,
AttrValue
::
LIST_INT
({
1
,
1
}))
.
ATTR
(
dilation
,
AttrValue
::
LIST_INT
({
1
,
1
}))
.
ATTR
(
pad_mode
,
AttrValue
::
INT
{
0
})
.
ATTR
(
bias_term
,
AttrValue
::
INT
{
0
})
.
ATTR
(
kernel
,
AttrValue
::
LIST_INT
({
0
,
0
}))
.
OP_END
();
/**
* Resize images to size using bilinear interpolation.
* <Input>
* x : The tensor of 4-D
* w : A int32 Tensor of 2 elements: [height, width].
* <Output>
* y : the output tensor
* <Attr>
* align_corners : If true, the centers of the 4 corner pixels of the
* input and output tensors are aligned, preserving the values at the corner
* pixels.
* output_dim_mode : Defaults 2, including 0: zoom_factor , 1:
* shrink_factor, 2: height/width. when output_dim_mode=2, the output-dim is
* controled by the [height, width] of w.
* shrink_factor : shrink factor.
* zoom_factor : zoom factor.
* pad_begin : begin of pad.
* pad_end : end of pad.
*/
REG_OP
(
ResizeBilinear
)
.
INPUT
(
x
,
TensorType
({
DT_FLOAT
,
DT_INT32
}))
.
INPUT
(
w
,
TensorType
({
DT_FLOAT
,
DT_INT32
}))
.
OUTPUT
(
y
,
TensorType
({
DT_FLOAT
,
DT_INT32
}))
.
ATTR
(
align_corners
,
AttrValue
::
BOOL
{
false
})
.
ATTR
(
output_dim_mode
,
AttrValue
::
INT
{
2
})
.
ATTR
(
shrink_factor
,
AttrValue
::
INT
{
1
})
.
ATTR
(
zoom_factor
,
AttrValue
::
INT
{
1
})
.
ATTR
(
pad_begin
,
AttrValue
::
INT
{
0
})
.
ATTR
(
pad_end
,
AttrValue
::
INT
{
0
})
.
OP_END
();
/**
* Resize images to size using nearest neighbor interpolation.
* <Input>
* image : Resize images to size using nearest neighbor interpolation.
* size : Must be one dimension and two elements
* <Output>
* output : the output tensor
* <Attr>
* align_corners : If true, the centers of the 4 corner pixels of the
* input and output tensors are aligned, preserving the values at the corner
* pixels. Defaults to false
*/
REG_OP
(
ResizeNearestNeighbor
)
.
INPUT
(
image
,
TensorType
({
DT_FLOAT
,
DT_INT32
,
DT_UINT8
,
DT_BOOL
}))
.
INPUT
(
size
,
TensorType
({
DT_INT32
}))
.
OUTPUT
(
output
,
TensorType
({
DT_FLOAT
,
DT_INT32
,
DT_UINT8
,
DT_BOOL
}))
.
ATTR
(
align_corners
,
AttrValue
::
BOOL
{
false
})
.
OP_END
();
/**
* Pads a tensor.
* <Input>
...
...
lite/kernels/npu/bridges/conv_transpose_op.cc
浏览文件 @
c1837d76
...
...
@@ -82,7 +82,6 @@ node_map_type ConvTransposeConverter(
lite
::
npu
::
OpList
::
Global
().
add
(
inputs_map
.
at
(
input_var_name
));
// set attributes
conv_transpose_node
->
set_attr_mode
(
1
);
conv_transpose_node
->
set_attr_format
(
0
);
// NCHW
conv_transpose_node
->
set_attr_pad_mode
(
0
);
// NOTSET
conv_transpose_node
->
set_attr_group
(
groups
);
...
...
lite/kernels/npu/bridges/interpolate_op.cc
浏览文件 @
c1837d76
...
...
@@ -45,6 +45,7 @@ node_map_type InterpolateConverter(
auto
out_h
=
op_info
->
GetAttr
<
int
>
(
"out_h"
);
auto
align_corners
=
op_info
->
GetAttr
<
bool
>
(
"align_corners"
);
int
align_mode
=
op_info
->
GetAttr
<
int
>
(
"align_mode"
);
auto
interp_method
=
op_info
->
GetAttr
<
std
::
string
>
(
"interp_method"
);
CHECK
(
!
(
align_mode
==
0
&&
!
align_corners
))
<<
"[NPU] align_mode = 0 && "
"align_corners = false isn't "
"supported in HiAI DDK"
;
...
...
@@ -58,11 +59,11 @@ node_map_type InterpolateConverter(
}
// update out_h and out_w if has OutSize
bool
inputs_map_has_w
=
false
;
std
::
shared_ptr
<
ge
::
Operator
>
out_size_node
=
nullptr
;
if
(
lite
::
npu
::
HasInputArg
(
op_info
,
scope
,
"OutSize"
))
{
auto
out_size_var_name
=
op_info
->
Input
(
"OutSize"
).
front
();
if
(
inputs_map
.
count
(
out_size_var_name
))
{
inputs_map_has_w
=
true
;
out_size_node
=
inputs_map
.
at
(
out_size_var_name
)
;
}
else
{
auto
out_size
=
scope
->
FindVar
(
out_size_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
...
...
@@ -73,58 +74,45 @@ node_map_type InterpolateConverter(
out_w
=
out_size_data
[
1
];
}
}
node_map_type
outputs_map
;
auto
interp_method
=
op_info
->
GetAttr
<
std
::
string
>
(
"interp_method"
);
if
(
interp_method
==
"bilinear"
)
{
auto
interp_node
=
std
::
make_shared
<
ge
::
op
::
ResizeBilinear
>
(
unique_op_type
);
lite
::
npu
::
OpList
::
Global
().
add
(
interp_node
);
interp_node
->
set_input_x
(
*
inputs_map
.
at
(
x_var_name
));
if
(
inputs_map_has_w
)
{
auto
out_size_var_name
=
op_info
->
Input
(
"OutSize"
).
front
();
interp_node
->
set_input_w
(
*
inputs_map
.
at
(
out_size_var_name
));
lite
::
npu
::
OpList
::
Global
().
add
(
inputs_map
.
at
(
out_size_var_name
));
}
else
{
if
(
out_size_node
==
nullptr
)
{
if
(
interp_method
==
"bilinear"
)
{
const
float
largest_multiple
=
7.0
f
;
float
multiple
=
static_cast
<
float
>
(
x_h
*
x_w
)
/
(
out_h
*
out_w
);
CHECK_LT
(
multiple
,
largest_multiple
)
<<
"[NPU] multiple=(ih*iw)/(oh*ow)="
<<
multiple
<<
" is too large, should not exceed "
<<
largest_multiple
<<
" in HiAI DDK"
;
auto
w_const_node
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
unique_op_type
+
"/w"
);
w_const_node
->
set_attr_value
(
lite
::
npu
::
CreateTensorAndFillData
(
std
::
vector
<
int
>
({
out_h
,
out_w
})));
interp_node
->
set_input_w
(
*
w_const_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
w_const_node
);
}
interp_node
->
set_attr_output_dim_mode
(
2
);
// 0: zoom_factor, 1: shrink_factor, 2: height/width
interp_node
->
set_attr_align_corners
(
align_corners
);
outputs_map
[
op_info
->
Output
(
"Out"
).
front
()]
=
interp_node
;
auto
out_size_const_node
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
unique_op_type
+
"/out_size"
);
out_size_const_node
->
set_attr_value
(
lite
::
npu
::
CreateTensorAndFillData
(
std
::
vector
<
int
>
({
out_h
,
out_w
})));
out_size_node
=
out_size_const_node
;
}
lite
::
npu
::
OpList
::
Global
().
add
(
out_size_node
);
std
::
shared_ptr
<
ge
::
Operator
>
interp_node
=
nullptr
;
if
(
interp_method
==
"bilinear"
)
{
auto
bilinear_interp_node
=
std
::
make_shared
<
ge
::
op
::
ResizeBilinear
>
(
unique_op_type
);
bilinear_interp_node
->
set_input_x
(
*
inputs_map
.
at
(
x_var_name
));
bilinear_interp_node
->
set_input_size
(
*
out_size_node
);
bilinear_interp_node
->
set_attr_align_corners
(
align_corners
);
interp_node
=
bilinear_interp_node
;
}
else
if
(
interp_method
==
"nearest"
)
{
auto
interp_node
=
auto
nearest_
interp_node
=
std
::
make_shared
<
ge
::
op
::
ResizeNearestNeighbor
>
(
unique_op_type
);
lite
::
npu
::
OpList
::
Global
().
add
(
interp_node
);
interp_node
->
set_input_image
(
*
inputs_map
.
at
(
x_var_name
));
if
(
inputs_map_has_w
)
{
auto
out_size_var_name
=
op_info
->
Input
(
"OutSize"
).
front
();
interp_node
->
set_input_size
(
*
inputs_map
.
at
(
out_size_var_name
));
lite
::
npu
::
OpList
::
Global
().
add
(
inputs_map
.
at
(
out_size_var_name
));
}
else
{
auto
w_const_node
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
unique_op_type
+
"/w"
);
w_const_node
->
set_attr_value
(
lite
::
npu
::
CreateTensorAndFillData
(
std
::
vector
<
int
>
({
out_h
,
out_w
})));
interp_node
->
set_input_size
(
*
w_const_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
w_const_node
);
}
interp_node
->
set_attr_align_corners
(
align_corners
);
outputs_map
[
op_info
->
Output
(
"Out"
).
front
()]
=
interp_node
;
nearest_interp_node
->
set_input_image
(
*
inputs_map
.
at
(
x_var_name
));
nearest_interp_node
->
set_input_size
(
*
out_size_node
);
nearest_interp_node
->
set_attr_align_corners
(
align_corners
);
interp_node
=
nearest_interp_node
;
}
else
{
LOG
(
FATAL
)
<<
"[NPU] Unsupported interpolate method: "
<<
interp_method
;
}
lite
::
npu
::
OpList
::
Global
().
add
(
interp_node
);
node_map_type
outputs_map
;
outputs_map
[
op_info
->
Output
(
"Out"
).
front
()]
=
interp_node
;
return
outputs_map
;
}
...
...
lite/kernels/npu/bridges/mul_op.cc
浏览文件 @
c1837d76
...
...
@@ -31,82 +31,67 @@ node_map_type MulConverter(const std::shared_ptr<lite::OpLite> mul_op,
auto
unique_op_type
=
lite
::
npu
::
UniqueName
(
op_type
);
LOG
(
INFO
)
<<
"[NPU] Converting "
+
op_type
+
"..."
;
auto
output_node
=
std
::
make_shared
<
ge
::
op
::
MatMul
>
(
unique_op_type
);
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
y_var_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
y
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
int
x_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"y_num_col_dims"
);
auto
*
xtensor
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
*
ytensor
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
int
m
=
xtensor
->
dims
().
Slice
(
0
,
x_num_col_dims
).
production
();
int
x_w
=
xtensor
->
dims
()
.
Slice
(
x_num_col_dims
,
xtensor
->
dims
().
size
())
.
production
();
int
y_h
=
ytensor
->
dims
().
Slice
(
0
,
y_num_col_dims
).
production
();
int
n
=
ytensor
->
dims
()
.
Slice
(
y_num_col_dims
,
ytensor
->
dims
().
size
())
.
production
();
CHECK_EQ
(
x_w
,
y_h
)
<<
"[NPU] x_w must be equal with y_h"
;
int
k
=
x_w
;
int
m
=
x_dims
.
Slice
(
0
,
x_num_col_dims
).
production
();
int
k
=
x_dims
.
Slice
(
x_num_col_dims
,
x_dims
.
size
()).
production
();
CHECK_EQ
(
k
,
y_dims
.
Slice
(
0
,
y_num_col_dims
).
production
())
<<
"[NPU] columns of X must be equal with rows of Y"
;
int
n
=
y_dims
.
Slice
(
y_num_col_dims
,
y_dims
.
size
()).
production
();
LOG
(
INFO
)
<<
"m:"
<<
m
<<
",n:"
<<
n
<<
",k:"
<<
k
;
LOG
(
INFO
)
<<
"x_var_name:"
<<
x_var_name
<<
", is data: "
<<
inputs_map
.
count
(
x_var_name
);
LOG
(
INFO
)
<<
"y_var_name:"
<<
y_var_name
<<
", is data: "
<<
inputs_map
.
count
(
y_var_name
);
CHECK
(
inputs_map
.
count
(
x_var_name
))
<<
"[NPU] MatMul only support X is data, Y is const yet"
;
<<
"[NPU] MatMul in HiAI DDK only support X is data, Y is const yet."
;
auto
mul_node
=
std
::
make_shared
<
ge
::
op
::
MatMul
>
(
unique_op_type
);
// add input x node which supports persistable and non-persistable tensor, and
// reshape to (m, k)
if
(
inputs_map
.
count
(
x_var_name
))
{
auto
xsrc
=
inputs_map
.
at
(
x_var_name
);
auto
reshapex
=
std
::
make_shared
<
ge
::
op
::
Reshape
>
(
x_var_name
+
"_reshape"
);
reshape
x
->
set_input_tensor
(
*
xsrc
);
reshape
x
->
set_attr_shape
({
m
,
k
});
reshape
x
->
set_attr_axis
(
0
);
lite
::
npu
::
OpList
::
Global
().
add
(
xsrc
);
lite
::
npu
::
OpList
::
Global
().
add
(
reshapex
);
output_node
->
set_input_x
(
*
reshapex
);
auto
reshaped_x_node
=
std
::
make_shared
<
ge
::
op
::
Reshape
>
(
x_var_name
+
"_reshape"
);
reshape
d_x_node
->
set_input_tensor
(
*
inputs_map
.
at
(
x_var_name
)
);
reshape
d_x_node
->
set_attr_shape
({
m
,
k
});
reshape
d_x_node
->
set_attr_axis
(
0
);
mul_node
->
set_input_x1
(
*
reshaped_x_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
inputs_map
.
at
(
x_var_name
)
);
lite
::
npu
::
OpList
::
Global
().
add
(
reshaped_x_node
);
}
else
{
auto
constx
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
x_var_name
);
ge
::
TensorDesc
desc
(
ge
::
Shape
({
m
,
k
}),
ge
::
FORMAT_NCHW
,
ge
::
DT_FLOAT
);
auto
size
=
desc
.
GetShape
().
GetShapeSize
();
CHECK_EQ
(
size
,
xtensor
->
dims
().
production
());
ge
::
TensorPtr
ptensor
=
std
::
make_shared
<
ge
::
Tensor
>
();
ptensor
->
SetTensorDesc
(
desc
);
auto
*
pdata
=
reinterpret_cast
<
uint8_t
*>
(
xtensor
->
mutable_data
<
float
>
());
ptensor
->
SetData
(
pdata
,
size
*
sizeof
(
float
));
constx
->
set_attr_value
(
ptensor
);
lite
::
npu
::
OpList
::
Global
().
add
(
constx
);
output_node
->
set_input_x
(
*
constx
);
auto
x_const_node
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
x_var_name
);
x_const_node
->
set_attr_value
(
lite
::
npu
::
CvtTensor
(
x
,
{
m
,
k
}));
mul_node
->
set_input_x1
(
*
x_const_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
x_const_node
);
}
// add input y node which only supports persistable tensor, and reshape to (k,
// n)
if
(
inputs_map
.
count
(
y_var_name
))
{
auto
ysrc
=
inputs_map
.
at
(
y_var_name
);
auto
reshapey
=
std
::
make_shared
<
ge
::
op
::
Reshape
>
(
y_var_name
+
"_reshape"
);
reshape
y
->
set_input_tensor
(
*
ysrc
);
reshape
y
->
set_attr_shape
({
k
,
n
});
reshape
y
->
set_attr_axis
(
0
);
lite
::
npu
::
OpList
::
Global
().
add
(
ysrc
);
lite
::
npu
::
OpList
::
Global
().
add
(
reshapey
);
output_node
->
set_input_w
(
*
reshapey
);
auto
reshaped_y_node
=
std
::
make_shared
<
ge
::
op
::
Reshape
>
(
y_var_name
+
"_reshape"
);
reshape
d_y_node
->
set_input_tensor
(
*
inputs_map
.
at
(
y_var_name
)
);
reshape
d_y_node
->
set_attr_shape
({
k
,
n
});
reshape
d_y_node
->
set_attr_axis
(
0
);
mul_node
->
set_input_x2
(
*
reshaped_y_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
inputs_map
.
at
(
y_var_name
)
);
lite
::
npu
::
OpList
::
Global
().
add
(
reshaped_y_node
);
}
else
{
auto
consty
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
y_var_name
);
ge
::
TensorDesc
desc
(
ge
::
Shape
({
k
,
n
}),
ge
::
FORMAT_NCHW
,
ge
::
DT_FLOAT
);
auto
size
=
desc
.
GetShape
().
GetShapeSize
();
CHECK_EQ
(
size
,
ytensor
->
dims
().
production
());
ge
::
TensorPtr
ptensor
=
std
::
make_shared
<
ge
::
Tensor
>
();
ptensor
->
SetTensorDesc
(
desc
);
auto
*
pdata
=
reinterpret_cast
<
uint8_t
*>
(
ytensor
->
mutable_data
<
float
>
());
ptensor
->
SetData
(
pdata
,
size
*
sizeof
(
float
));
consty
->
set_attr_value
(
ptensor
);
lite
::
npu
::
OpList
::
Global
().
add
(
consty
);
output_node
->
set_input_w
(
*
consty
);
auto
y_const_node
=
std
::
make_shared
<
ge
::
op
::
Const
>
(
y_var_name
);
y_const_node
->
set_attr_value
(
lite
::
npu
::
CvtTensor
(
y
,
{
k
,
n
}));
mul_node
->
set_input_x2
(
*
y_const_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
y_const_node
);
}
lite
::
npu
::
OpList
::
Global
().
add
(
output
_node
);
lite
::
npu
::
OpList
::
Global
().
add
(
mul
_node
);
node_map_type
outputs_map
;
outputs_map
[
op_info
->
Output
(
"Out"
).
front
()]
=
output
_node
;
outputs_map
[
op_info
->
Output
(
"Out"
).
front
()]
=
mul
_node
;
return
outputs_map
;
}
...
...
lite/tools/build_npu.sh
浏览文件 @
c1837d76
...
...
@@ -5,8 +5,8 @@ set -ex
ARM_OS
=
"android"
# android only yet
ARM_ABI
=
"armv8"
# armv8, armv7
ARM_LANG
=
"gcc"
# gcc only yet
ANDROID_STL
=
"c++_s
tatic"
# c++_shared, c++_static
DDK_ROOT
=
"
$(
pwd
)
/ai_ddk_lib/"
# H
IAI SDK
from https://developer.huawei.com/consumer/cn/hiai/
ANDROID_STL
=
"c++_s
hared"
# c++_shared/c++_static, c++_shared is used by HiAI DDK 310
DDK_ROOT
=
"
$(
pwd
)
/ai_ddk_lib/"
# H
iAI DDK 310
from https://developer.huawei.com/consumer/cn/hiai/
TARGET_NAME
=
"test_npu_pass"
# default target
BUILD_EXTRA
=
OFF
# ON(with sequence ops)/OFF
WITH_JAVA
=
ON
# ON(build jar and jni so)/OFF
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录