io.cpp 13.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
D
dolphin8 已提交
17
#define PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
18
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
19
#include <algorithm>
D
dolphin8 已提交
20
#include <ctime>
D
dolphin8 已提交
21
#include <unordered_map>
D
dolphin8 已提交
22
#endif
L
liuruilong 已提交
23 24

#include "common/enforce.h"
L
liuruilong 已提交
25
#include "common/log.h"
L
liuruilong 已提交
26
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
27 28
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
29
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
30 31 32 33
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42 43 44 45 46 47
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
79
    const std::string &dirname, bool optimize) {
L
liuruilong 已提交
80 81 82 83 84 85
  auto program = this->LoadProgram(dirname + "/__model__", optimize);
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
86 87 88
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
89 90 91 92 93 94 95
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
96 97
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
    const std::string &model_path, bool optimize) {
L
liuruilong 已提交
98
  std::string model_filename = model_path;
W
wangliu 已提交
99 100 101 102 103 104 105
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
106
      NULL, read_size, buf);
W
wangliu 已提交
107
  //
W
wangliu 已提交
108
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
109
  //
W
wangliu 已提交
110
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
111
  //
112
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
113 114 115 116

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

117
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
118 119 120
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
121
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
144 145
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
146 147
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
148
    program.optimizeProgram =
L
liuruilong 已提交
149
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
150
  }
L
liuruilong 已提交
151 152 153 154 155 156
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
157 158 159 160 161 162 163 164 165
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
166 167
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
168
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
183
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
184 185 186 187 188 189 190 191
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
192 193 194 195 196
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
197 198 199 200
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
201
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
202
  // 1. version
L
liuruilong 已提交
203 204
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
205 206

  // 2 Lod information
L
liuruilong 已提交
207 208 209
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
210 211 212
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
213 214 215
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
216
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
217 218 219 220 221 222 223

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
224 225 226 227 228 229 230
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
231 232
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
233 234

  // 4. tensor desc
L
liuruilong 已提交
235 236 237
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
238
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
239 240 241 242
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
278 279 280
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
281
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
282 283 284 285 286 287 288 289 290 291 292 293
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
294

L
liuruilong 已提交
295 296
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
297 298
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
299
        delete origin_data;
W
wangliu 已提交
300 301 302 303 304 305 306 307 308 309 310
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
311
template <typename Dtype, Precision P>
L
liuruilong 已提交
312
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
313
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
314
  char *data = origin_data;
L
liuruilong 已提交
315 316 317 318 319 320 321 322
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
323
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
324 325 326 327 328 329 330 331 332 333 334
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
}

W
wangliu 已提交
335
template <typename Dtype, Precision P>
W
wangliu 已提交
336 337
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
338 339 340 341 342 343
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
344
      to_predict_program_->Block(0);
D
dolphin8 已提交
345
#ifdef PADDLE_MOBILE_PROFILE
346
  std::unordered_map<std::string, clock_t> _profile;
D
dolphin8 已提交
347
#endif
W
wangliu 已提交
348 349
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
D
dolphin8 已提交
350
#ifdef PADDLE_MOBILE_PROFILE
351
    _profile[op->Type()] -= clock();
D
dolphin8 已提交
352
#endif
W
wangliu 已提交
353
    op->Run();
D
dolphin8 已提交
354
#ifdef PADDLE_MOBILE_PROFILE
355
    _profile[op->Type()] += clock();
D
dolphin8 已提交
356
#endif
W
wangliu 已提交
357
  }
D
dolphin8 已提交
358 359
#ifdef PADDLE_MOBILE_PROFILE
  {
D
dolphin8 已提交
360
    std::cout << "====================[ profile ]======================\n";
361 362
    using prof_t = std::pair<std::string, clock_t>;
    std::vector<prof_t> _tprofile(_profile.begin(), _profile.end());
363
    clock_t _ptotal = 0;
D
dolphin8 已提交
364
    for (auto const &p : _tprofile) {
D
dolphin8 已提交
365 366
      _ptotal += p.second;
    }
367 368 369 370
    auto compf = [](const prof_t &a, const prof_t &b) {
      return a.second > b.second;
    };
    std::sort(_tprofile.begin(), _tprofile.end(), compf);
D
dolphin8 已提交
371 372
    _tprofile.push_back(std::make_pair("total", _ptotal));
    for (auto const &p : _tprofile) {
373 374
      printf("%-16s\t%-10.0f\t%-.4f\n", p.first.c_str(), (float)p.second,
             (float)p.second / _ptotal * 100.0);
D
dolphin8 已提交
375
    }
D
dolphin8 已提交
376
    std::cout << "====================[---------]======================\n";
D
dolphin8 已提交
377 378
  }
#endif
W
wangliu 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
393 394 395
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
396
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
397 398
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
399 400 401 402 403 404 405 406
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
407 408 409 410 411
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile