executor.cpp 31.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
30
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
31 32 33 34

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
65 66 67
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
68

69
  const auto &blocks = program_desc_->Blocks();
70 71 72 73 74 75 76 77
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
78
        op_desc->GetAttrMap(), program_.scope.get());
79 80 81 82
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
83
    }
84
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
85
  }
W
wangliu 已提交
86
  if (program_.combined) {
L
liuruilong 已提交
87 88 89 90
    InitCombineMemory();
  } else {
    InitMemory();
  }
91 92

  int count = 0;
93 94 95
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
96
  }
W
wangliu 已提交
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

126
template <typename T>
127
static void LoadMemInternal(void **data, LoDTensor *tensor,
128
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
129
  char **data_buf = reinterpret_cast<char **>(data);
130
  int64_t size = tensor->numel();
131
  T *tensor_data = tensor->mutable_data<T>();
132 133
  if (quant_uint8) {
    // should be moved into operator init function
134 135
    float min_value;
    float max_value;
136 137 138
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
139
    const float factor = (max_value - min_value) / 255.0;
140
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
141 142
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
143
    }
144
    *data_buf += size * sizeof(uint8_t);
145
  } else {
146 147
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
148
  }
149
}
W
wangliu 已提交
150

151 152 153 154
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
155
  char **data_buf = reinterpret_cast<char **>(data);
156
  // version
157
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
158
  *data_buf += sizeof(uint32_t);
159
  // lod information
H
hjchen2 已提交
160 161
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
162
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
163
  *data_buf += sizeof(uint64_t);
164 165 166 167

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
168
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
169
    *data_buf += sizeof(uint64_t);
170
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
171
    memory::Copy(tmp_dim.data(), *data_buf, size);
172
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
173
    *data_buf += size;
W
wangliu 已提交
174
  }
175
  // tensor version
176
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
177
  *data_buf += sizeof(uint32_t);
178
  // tensor desc size
179
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
180
  *data_buf += sizeof(int32_t);
181
  // skip tensor desc
Refine  
陈后江 已提交
182
  *data_buf += tensor_desc_size;
183

184 185
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
186 187
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
188
    case VARTYPE_TYPE_FP32:
189 190
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
191
      break;
192
    case VARTYPE_TYPE_INT8:
193
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
194
      break;
195
    case VARTYPE_TYPE_INT32:
196
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
197 198
      break;
    default:
199
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
200
  }
W
wangliu 已提交
201 202
}

203 204 205
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
206 207 208 209
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
210
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
211 212
          continue;
        }
Refine  
陈后江 已提交
213
        char *origin_data =
Refine  
陈后江 已提交
214
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
215
        char *data = origin_data;
H
update  
hjchen2 已提交
216
        auto tensor = var->template GetMutable<LoDTensor>();
217 218
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
219
      } else {
220
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
221
        varInputMemory(var_desc, var);
W
wangliu 已提交
222 223 224 225 226
      }
    }
  }
}

227 228
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
229
  char *origin_data = nullptr;
Refine  
陈后江 已提交
230
  bool self_alloc = false;
231
  if (program_.combined_params_buf && program_.combined_params_len) {
232 233
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
234
  } else {
Refine  
陈后江 已提交
235
    self_alloc = true;
Refine  
陈后江 已提交
236
    origin_data = ReadFileToBuff(program_.para_path);
237
  }
Refine  
陈后江 已提交
238 239
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
240
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
241 242 243 244
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
245
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
246 247
          continue;
        }
L
liuruilong 已提交
248 249

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
250
        auto tensor = var->template GetMutable<LoDTensor>();
251
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
252
      } else {
H
update  
hjchen2 已提交
253 254
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
255 256 257
      }
    }
  }
Refine  
陈后江 已提交
258
  if (self_alloc) {
259
    delete[] origin_data;
Refine  
陈后江 已提交
260 261
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
262
}
263

L
liuruilong 已提交
264
template <typename Device, typename T>
L
liuruilong 已提交
265
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
266 267 268 269 270 271
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
272
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
273 274 275 276 277
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
278 279 280 281
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
282
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
283 284 285
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
286 287 288 289 290 291 292 293 294 295
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

296 297
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
298
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
299
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
300
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
301 302 303
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
    tensor->mutable_data(TypeId(data_type));
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
334
  }
H
update  
hjchen2 已提交
335
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
336
}
L
liuruilong 已提交
337

338 339 340 341 342
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
343
  }
344 345 346 347 348 349 350 351
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
352
  }
353
  return this->Predict();
W
wangliu 已提交
354
}
xiebaiyuan's avatar
xiebaiyuan 已提交
355

356 357 358
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
359 360 361 362 363 364 365
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
366
  Tensor feed_tensor(input, make_ddim(dims));
367
  SetInput(feed_tensor, input_name);
368 369
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
370 371
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
372 373 374 375 376 377
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
378

379 380 381
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
382
  int index = 0;
383
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
384
    index = feed_indices_.find(var_name)->second;
385
  }
H
hjchen2 已提交
386 387 388 389
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
390
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
391 392 393
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
394 395 396
    }
  }

H
hjchen2 已提交
397 398
  target.Resize(input.dims());
  target.ShareDataWith(input);
399
}
xiebaiyuan's avatar
xiebaiyuan 已提交
400

401 402 403
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
404
  int index = 0;
405
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
406
    index = feed_indices_.find(var_name)->second;
407
  }
H
hjchen2 已提交
408 409 410 411
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
412
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
413
    if (input_dim_last_ != input.dims()) {
414
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
415
      input_dim_last_ = input.dims();
L
liuruilong 已提交
416 417 418
    }
  }

H
hjchen2 已提交
419 420 421
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
422 423 424 425 426
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
427 428 429 430 431 432 433 434 435
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
436

437 438 439 440 441 442 443
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
444
}
xiebaiyuan's avatar
xiebaiyuan 已提交
445

446 447
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
448 449 450
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
451
#ifdef PADDLE_MOBILE_PROFILE
452
  std::vector<ProfInfo> profile(ops_of_block0_.size());
453 454
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
455
#endif
456
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
457
#ifdef PADDLE_MOBILE_PROFILE
458 459
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
460
#endif
461 462 463 464
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
465
#ifdef PADDLE_MOBILE_PROFILE
466 467 468
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
469 470 471 472 473 474 475
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
476 477 478
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
479 480
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
481
      int kernel_size = filter->dims()[2];
482 483
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
484
    } else {
485
      _tp[ops_of_block0_[i]->Type()] += timeCost;
486
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
487
  }
H
hjchen2 已提交
488
  printf("====================[ profile ]======================\n");
489
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
505
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
506
#endif
507
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
508 509
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

536
#ifdef PADDLE_MOBILE_FPGA
537 538 539 540
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
541
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
542 543
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
544
}
545

546 547
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
548
  InjectVariable(t, "feed0");
549
}
550

551
template <typename Device, typename T>
552
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
553
  auto input_size = v.size();
Z
zhangyang0701 已提交
554 555
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
556 557 558
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
559
    auto var = program_.scope->Var("feed", i + index);
560 561 562 563 564 565 566 567 568
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
569 570
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
571 572
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
573

574
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
575
    auto var = program_.scope->Var("fetch", i + index);
576 577
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
578
  }
579
}
580

581
template <typename Device, typename T>
582 583 584 585
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
586
}
587

588 589
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
590
  auto &ops = ops_of_block0_;
591

Z
zhangyang 已提交
592 593 594 595 596
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
597 598 599
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
600
}
601

602 603
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
604
  auto &ops = ops_of_block0_;
605
  end = end < 0 ? static_cast<int>(ops.size()) : end;
606 607 608 609 610 611 612 613 614 615 616 617
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
618
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
619 620 621 622 623 624 625
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
626
}
627

628 629
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
630
  Predict_From_To(start);
631
}
632

633 634
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
635
  Predict_From_To(0, end);
636
}
637 638
#endif

Y
yangfei 已提交
639
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
640 641
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
642
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
674

xiebaiyuan's avatar
xiebaiyuan 已提交
675 676 677
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
678 679 680 681 682 683 684
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
685 686 687 688 689

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
690
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
691
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
692
    if (input_dim_last_ != input.dims()) {
693 694 695
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
696 697 698 699 700 701 702 703
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
704 705
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
706 707
}

708 709 710
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
711

Y
yangfei 已提交
712
template <>
H
hjchen2 已提交
713 714
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

752
  const TensorDesc &desc = var_desc.Tensor_desc();
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
787

Y
yangfei 已提交
788
template <>
789 790
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
791 792 793
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
794
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
795
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
796
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
797
          continue;
L
liuruilong 已提交
798
        } else {
799
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
800
        }
L
liuruilong 已提交
801

Y
yangfei 已提交
802
        char *origin_data =
L
liuruilong 已提交
803
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
804
        char *data = origin_data;
Y
yangfei 已提交
805
        cl_context context = program_.scope->GetCLScpoe()->Context();
806
        const TensorDesc &desc = var_desc->Tensor_desc();
807 808 809 810 811
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
812
        float *tensorInput = static_cast<float *>(
813 814
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
815

816
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
817

L
liuruilong 已提交
818 819
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
820

821
        delete origin_data;
Y
yangfei 已提交
822
        paddle_mobile::memory::Free(tensorInput);
823
      } else {
824 825
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
826
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
827 828
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
829

830 831 832
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
833
          DLOG << var_desc->Name();
L
liuruilong 已提交
834
          cl_image->InitEmptyImage(context, command_queue, ddim);
835
        }
Y
yangfei 已提交
836 837 838 839
      }
    }
  }
}
840

Y
yangfei 已提交
841
template <>
842
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
843 844
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
845 846
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
847 848
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
849
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
850 851
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
852
    self_alloc = true;
L
liuruilong 已提交
853
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
854 855
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
856
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
857

858
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
859 860 861
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
862
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
863
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
864
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
865
          continue;
L
liuruilong 已提交
866
        } else {
867
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
868 869 870 871
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

872 873
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
874 875 876 877 878

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
879 880 881
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
882 883 884 885

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

886 887
        paddle_mobile::memory::Free(tensorInput);
      } else {
888
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
889
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
890 891
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
892 893 894
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
895
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
896 897 898
      }
    }
  }
Y
yangfei 已提交
899
  if (self_alloc) {
900
    delete data;
Y
yangfei 已提交
901
  }
Y
yangfei 已提交
902
  LOG(kLOG_INFO) << " end init combine memory ";
903
}
Y
yangfei 已提交
904 905 906

#endif

907
template class Executor<CPU, float>;
Y
yangfei 已提交
908

909
template class Executor<FPGA, float>;
W
wangliu 已提交
910

911
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
912

913
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
914 915

}  // namespace framework
W
wangliu 已提交
916
}  // namespace paddle_mobile