unsqueeze_compute_test.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
16
#include <string>
17 18 19 20 21 22 23 24 25 26 27
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace paddle {
namespace lite {

class UnsqueezeComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string x_ = "X";
  std::string out_ = "Out";
28 29
  std::string axes_tensor_ = "AxesTensor";
  std::vector<std::string> axes_tensor_list_;
30 31
  std::vector<int> axes_;
  DDim dims_;
32 33
  // input_axes_flag_: 1 for axes, 2 for axes_tensor, 3 for axes_tensor_list
  int input_axes_flag_ = 1;
34 35 36 37 38

 public:
  UnsqueezeComputeTester(const Place& place,
                         const std::string& alias,
                         const std::vector<int>& axes,
39 40 41 42 43 44 45
                         DDim dims,
                         int input_axes_flag)
      : TestCase(place, alias), dims_(dims), input_axes_flag_(input_axes_flag) {
    for (int v : axes) {
      axes_.push_back(v);
    }
  }
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

  void RunBaseline(Scope* scope) override {
    const auto* input = scope->FindTensor(x_);
    CHECK(input);
    auto* out = scope->NewTensor(out_);
    CHECK(out);

    DDim in_dims(dims_);
    int output_size = in_dims.size() + static_cast<int>(axes_.size());
    int cur_output_size = in_dims.size();
    std::vector<int64_t> output_shape(output_size, 0);

    // Validate Check: rank range.
    CHECK_LE(output_size, 6)
        << "The output tensor's rank should be less than 6.";

    for (int axis : axes_) {
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
      // Validate Check: the axis bound
      CHECK((cur >= 0) && (cur <= cur_output_size))
          << "The unsqueeze dims must be within range of current rank.";
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }

      output_shape[cur] = 1;
      // Add the output size.
      cur_output_size++;
    }

    // Make output shape
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }
87
    out->Resize(DDim(output_shape));
88 89 90 91 92 93 94 95 96
    auto* input_data = input->data<float>();
    auto* out_data = out->mutable_data<float>();
    memcpy(out_data, input_data, sizeof(float) * dims_.production());
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("unsqueeze");
    op_desc->SetInput("X", {x_});
    op_desc->SetOutput("Out", {out_});
97 98 99 100 101 102 103 104 105
    if (input_axes_flag_ == 1) {
      op_desc->SetAttr("axes", axes_);
    } else if (input_axes_flag_ == 2) {
      op_desc->SetInput("AxesTensor", {axes_tensor_});
    } else if (input_axes_flag_ == 3) {
      op_desc->SetInput("AxesTensorList", axes_tensor_list_);
    } else {
      LOG(FATAL) << "input input_axes_flag_ error. " << input_axes_flag_;
    }
106 107 108 109 110 111 112 113
  }

  void PrepareData() override {
    std::vector<float> in_data(dims_.production());
    for (int i = 0; i < dims_.production(); ++i) {
      in_data[i] = i;
    }
    SetCommonTensor(x_, dims_, in_data.data());
114 115 116 117 118 119 120 121 122 123 124

    if (input_axes_flag_ == 2) {
      DDim axes_tensor_dim{{static_cast<int>(axes_.size())}};
      std::vector<int> axes_tensor_data(axes_.size());
      for (int i = 0; i < axes_tensor_dim.production(); i++) {
        axes_tensor_data[i] = axes_[i];
      }
      SetCommonTensor(axes_tensor_, axes_tensor_dim, axes_tensor_data.data());
    } else if (input_axes_flag_ == 3) {
      std::string name = "axes_tensor_";
      for (size_t i = 0; i < axes_.size(); i++) {
125
        name = name + paddle::lite::to_string(i);
126
        axes_tensor_list_.push_back(name);
127
        SetCommonTensor(name, DDim({1}), &axes_[i]);
128 129
      }
    }
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }
};

class Unsqueeze2ComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string x_ = "X";
  std::string out_ = "Out";
  std::string xshape_ = "XShape";
  std::vector<int> axes_;
  DDim dims_;

 public:
  Unsqueeze2ComputeTester(const Place& place,
                          const std::string& alias,
                          const std::vector<int>& axes,
                          DDim dims)
      : TestCase(place, alias), axes_(axes), dims_(dims) {}

  void RunBaseline(Scope* scope) override {
    const auto* input = scope->FindTensor(x_);
    CHECK(input);
    auto* out = scope->NewTensor(out_);
    CHECK(out);
    auto* xshape = scope->NewTensor(xshape_);
    CHECK(xshape);
156
    std::vector<int64_t> xshape_sp(dims_.size() + 1, 0);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    for (size_t i = 0; i < dims_.size(); ++i) {
      xshape_sp[i + 1] = dims_[i];
    }
    xshape->Resize(DDim(xshape_sp));

    DDim in_dims(dims_);
    int output_size = in_dims.size() + static_cast<int>(axes_.size());
    int cur_output_size = in_dims.size();
    std::vector<int64_t> output_shape(output_size, 0);

    // Validate Check: rank range.
    CHECK_LE(output_size, 6)
        << "The output tensor's rank should be less than 6.";

    for (int axis : axes_) {
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
      // Validate Check: the axis bound
      CHECK((cur >= 0) && (cur <= cur_output_size))
          << "The unsqueeze dims must be within range of current rank.";
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }

      output_shape[cur] = 1;
      // Add the output size.
      cur_output_size++;
    }

    // Make output shape
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    out->Resize(DDim(output_shape));

    auto* input_data = input->data<float>();
    auto* out_data = out->mutable_data<float>();
    memcpy(out_data, input_data, sizeof(float) * dims_.production());
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("unsqueeze2");
    op_desc->SetInput("X", {x_});
    op_desc->SetOutput("Out", {out_});
    op_desc->SetOutput("XShape", {xshape_});
    op_desc->SetAttr("axes", axes_);
  }

  void PrepareData() override {
    std::vector<float> in_data(dims_.production());
    for (int i = 0; i < dims_.production(); ++i) {
      in_data[i] = i;
    }
    SetCommonTensor(x_, dims_, in_data.data());
  }
};

221
void test_unsqueeze(Place place, float abs_error = 2e-5) {
222
  for (std::vector<int> axes : {std::vector<int>({1}),
223 224
                                std::vector<int>({0, 2}),
                                std::vector<int>({0, -2})}) {
225 226 227 228 229 230 231 232 233 234
    for (auto dims : std::vector<std::vector<int64_t>>{{3}, {3, 5}, {3, 5, 7}})
      for (int input_axes_flag : {1, 2, 3}) {
#ifdef LITE_WITH_NPU
        if (input_axes_flag != 1) continue;
        if (dims.size() + axes.size() > 4) continue;
#endif
        std::unique_ptr<arena::TestCase> tester(new UnsqueezeComputeTester(
            place, "def", axes, DDim(dims), input_axes_flag));
        arena::Arena arena(std::move(tester), place, abs_error);
        arena.TestPrecision();
235 236 237 238
      }
  }
}

239
void test_unsqueeze2(Place place, float abs_error = 2e-5) {
240
  for (std::vector<int> axes : {std::vector<int>({0}),
241 242
                                std::vector<int>({0, 2}),
                                std::vector<int>({0, -2})}) {
243 244 245 246 247 248 249 250
    for (auto dims :
         std::vector<std::vector<int64_t>>{{3}, {3, 5}, {3, 5, 7}}) {
#ifdef LITE_WITH_NPU
      if (dims.size() + axes.size() > 4) continue;
#endif
      std::unique_ptr<arena::TestCase> tester(
          new Unsqueeze2ComputeTester(place, "def", axes, DDim(dims)));
      arena::Arena arena(std::move(tester), place, abs_error);
251
      arena.TestPrecision({"XShape"});
252 253 254 255
    }
  }
}

256
TEST(unsqueeze, precision) {
257 258 259 260 261
  Place place;
  float abs_error = 2e-5;
#ifdef LITE_WITH_NPU
  place = TARGET(kNPU);
  abs_error = 1e-2;  // Using fp16 in NPU
262
#elif defined(LITE_WITH_ARM) || defined(LITE_WITH_X86)
263
  place = TARGET(kHost);
264
#endif
265
  test_unsqueeze(place, abs_error);
266 267
}

268
TEST(unsqueeze2, precision) {
269 270 271 272
  Place place;
  float abs_error = 2e-5;
#ifdef LITE_WITH_NPU
  place = TARGET(kNPU);
273 274
  abs_error = 1e-2;  // Using fp16 in NPU
#elif defined(LITE_WITH_ARM) || defined(LITE_WITH_X86)
275
  place = TARGET(kHost);
276
#endif
277

278
  test_unsqueeze2(place, abs_error);
279 280 281 282
}

}  // namespace lite
}  // namespace paddle