// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class UnsqueezeComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string x_ = "X"; std::string out_ = "Out"; std::string axes_tensor_ = "AxesTensor"; std::vector axes_tensor_list_; std::vector axes_; DDim dims_; // input_axes_flag_: 1 for axes, 2 for axes_tensor, 3 for axes_tensor_list int input_axes_flag_ = 1; public: UnsqueezeComputeTester(const Place& place, const std::string& alias, const std::vector& axes, DDim dims, int input_axes_flag) : TestCase(place, alias), dims_(dims), input_axes_flag_(input_axes_flag) { for (int v : axes) { axes_.push_back(v); } } void RunBaseline(Scope* scope) override { const auto* input = scope->FindTensor(x_); CHECK(input); auto* out = scope->NewTensor(out_); CHECK(out); DDim in_dims(dims_); int output_size = in_dims.size() + static_cast(axes_.size()); int cur_output_size = in_dims.size(); std::vector output_shape(output_size, 0); // Validate Check: rank range. CHECK_LE(output_size, 6) << "The output tensor's rank should be less than 6."; for (int axis : axes_) { int cur = axis < 0 ? axis + cur_output_size + 1 : axis; // Validate Check: the axis bound CHECK((cur >= 0) && (cur <= cur_output_size)) << "The unsqueeze dims must be within range of current rank."; // Move old axis, and insert new axis for (int i = cur_output_size; i >= cur; --i) { if (output_shape[i] == 1) { // Move axis output_shape[i + 1] = 1; output_shape[i] = 0; } } output_shape[cur] = 1; // Add the output size. cur_output_size++; } // Make output shape for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) { if (output_shape[out_idx] == 0) { output_shape[out_idx] = in_dims[in_idx++]; } } out->Resize(DDim(output_shape)); auto* input_data = input->data(); auto* out_data = out->mutable_data(); memcpy(out_data, input_data, sizeof(float) * dims_.production()); } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("unsqueeze"); op_desc->SetInput("X", {x_}); op_desc->SetOutput("Out", {out_}); if (input_axes_flag_ == 1) { op_desc->SetAttr("axes", axes_); } else if (input_axes_flag_ == 2) { op_desc->SetInput("AxesTensor", {axes_tensor_}); } else if (input_axes_flag_ == 3) { op_desc->SetInput("AxesTensorList", axes_tensor_list_); } else { LOG(FATAL) << "input input_axes_flag_ error. " << input_axes_flag_; } } void PrepareData() override { std::vector in_data(dims_.production()); for (int i = 0; i < dims_.production(); ++i) { in_data[i] = i; } SetCommonTensor(x_, dims_, in_data.data()); if (input_axes_flag_ == 2) { DDim axes_tensor_dim{{static_cast(axes_.size())}}; std::vector axes_tensor_data(axes_.size()); for (int i = 0; i < axes_tensor_dim.production(); i++) { axes_tensor_data[i] = axes_[i]; } SetCommonTensor(axes_tensor_, axes_tensor_dim, axes_tensor_data.data()); } else if (input_axes_flag_ == 3) { std::string name = "axes_tensor_"; for (size_t i = 0; i < axes_.size(); i++) { name = name + paddle::lite::to_string(i); axes_tensor_list_.push_back(name); SetCommonTensor(name, DDim({1}), &axes_[i]); } } } }; class Unsqueeze2ComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string x_ = "X"; std::string out_ = "Out"; std::string xshape_ = "XShape"; std::vector axes_; DDim dims_; public: Unsqueeze2ComputeTester(const Place& place, const std::string& alias, const std::vector& axes, DDim dims) : TestCase(place, alias), axes_(axes), dims_(dims) {} void RunBaseline(Scope* scope) override { const auto* input = scope->FindTensor(x_); CHECK(input); auto* out = scope->NewTensor(out_); CHECK(out); auto* xshape = scope->NewTensor(xshape_); CHECK(xshape); std::vector xshape_sp(dims_.size() + 1, 0); for (size_t i = 0; i < dims_.size(); ++i) { xshape_sp[i + 1] = dims_[i]; } xshape->Resize(DDim(xshape_sp)); DDim in_dims(dims_); int output_size = in_dims.size() + static_cast(axes_.size()); int cur_output_size = in_dims.size(); std::vector output_shape(output_size, 0); // Validate Check: rank range. CHECK_LE(output_size, 6) << "The output tensor's rank should be less than 6."; for (int axis : axes_) { int cur = axis < 0 ? axis + cur_output_size + 1 : axis; // Validate Check: the axis bound CHECK((cur >= 0) && (cur <= cur_output_size)) << "The unsqueeze dims must be within range of current rank."; // Move old axis, and insert new axis for (int i = cur_output_size; i >= cur; --i) { if (output_shape[i] == 1) { // Move axis output_shape[i + 1] = 1; output_shape[i] = 0; } } output_shape[cur] = 1; // Add the output size. cur_output_size++; } // Make output shape for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) { if (output_shape[out_idx] == 0) { output_shape[out_idx] = in_dims[in_idx++]; } } out->Resize(DDim(output_shape)); auto* input_data = input->data(); auto* out_data = out->mutable_data(); memcpy(out_data, input_data, sizeof(float) * dims_.production()); } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("unsqueeze2"); op_desc->SetInput("X", {x_}); op_desc->SetOutput("Out", {out_}); op_desc->SetOutput("XShape", {xshape_}); op_desc->SetAttr("axes", axes_); } void PrepareData() override { std::vector in_data(dims_.production()); for (int i = 0; i < dims_.production(); ++i) { in_data[i] = i; } SetCommonTensor(x_, dims_, in_data.data()); } }; void test_unsqueeze(Place place, float abs_error = 2e-5) { for (std::vector axes : {std::vector({1}), std::vector({0, 2}), std::vector({0, -2})}) { for (auto dims : std::vector>{{3}, {3, 5}, {3, 5, 7}}) for (int input_axes_flag : {1, 2, 3}) { #ifdef LITE_WITH_NPU if (input_axes_flag != 1) continue; if (dims.size() + axes.size() > 4) continue; #endif std::unique_ptr tester(new UnsqueezeComputeTester( place, "def", axes, DDim(dims), input_axes_flag)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision(); } } } void test_unsqueeze2(Place place, float abs_error = 2e-5) { for (std::vector axes : {std::vector({0}), std::vector({0, 2}), std::vector({0, -2})}) { for (auto dims : std::vector>{{3}, {3, 5}, {3, 5, 7}}) { #ifdef LITE_WITH_NPU if (dims.size() + axes.size() > 4) continue; #endif std::unique_ptr tester( new Unsqueeze2ComputeTester(place, "def", axes, DDim(dims))); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision({"XShape"}); } } } TEST(unsqueeze, precision) { Place place; float abs_error = 2e-5; #ifdef LITE_WITH_NPU place = TARGET(kNPU); abs_error = 1e-2; // Using fp16 in NPU #elif defined(LITE_WITH_ARM) || defined(LITE_WITH_X86) place = TARGET(kHost); #endif test_unsqueeze(place, abs_error); } TEST(unsqueeze2, precision) { Place place; float abs_error = 2e-5; #ifdef LITE_WITH_NPU place = TARGET(kNPU); abs_error = 1e-2; // Using fp16 in NPU #elif defined(LITE_WITH_ARM) || defined(LITE_WITH_X86) place = TARGET(kHost); #endif test_unsqueeze2(place, abs_error); } } // namespace lite } // namespace paddle