conv_kernel.cpp 5.0 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

Y
yangfei 已提交
29 30 31
  auto filter_ddim = param->Filter()->dims();

  std::vector<int64_t> filter_shape(
L
liuruilong 已提交
32
      {filter_ddim[1], filter_ddim[0], filter_ddim[2], filter_ddim[3]});
Y
yangfei 已提交
33 34 35 36 37
  framework::DDim ddim = framework::make_ddim(filter_shape);
  if (filter_ddim[1] == 1) {
    param->Filter()->Resize(ddim);
  }

L
liuruilong 已提交
38 39
  param->Filter()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
40

L
liuruilong 已提交
41 42 43 44
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
45 46
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
L
liuruilong 已提交
47 48
  DLOG << " width of one block: " << param->Filter()->dims()[3];
  DLOG << " height of one block: " << param->Filter()->dims()[2];
L
liuruilong 已提交
49 50
  DLOG << " filter dims: " << param->Filter()->dims();

L
liuruilong 已提交
51
  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
L
liuruilong 已提交
52
    DLOG << " here1 ";
L
liuruilong 已提交
53
    this->cl_helper_.AddKernel("conv_1x1", "conv_kernel.cl");
L
liuruilong 已提交
54

Y
yangfei 已提交
55 56 57
  } else if (param->Filter()->dims()[0] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
L
liuruilong 已提交
58
    DLOG << " here2 ";
Y
yangfei 已提交
59
    this->cl_helper_.AddKernel("depth_conv_3x3", "depthwise_conv_kernel.cl");
L
liuruilong 已提交
60

L
liuruilong 已提交
61 62
  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
L
liuruilong 已提交
63
    DLOG << " here3 ";
L
liuruilong 已提交
64
    this->cl_helper_.AddKernel("conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
65

L
liuruilong 已提交
66 67 68
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
69

L
liuruilong 已提交
70 71 72 73 74
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
75 76 77 78 79 80 81
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
L
liuruilong 已提交
82
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
83 84 85

  int stride = param.Strides()[0];
  int offset = param.Offset();
L
liuruilong 已提交
86 87 88
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
L
liuruilong 已提交
89 90
  int dilation = param.Dilations()[0];

L
liuruilong 已提交
91 92 93 94
  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];
L
liuruilong 已提交
95

L
liuruilong 已提交
96 97 98
  cl_int status;

  DLOG << " begin set kernel arg ";
L
liuruilong 已提交
99 100 101 102 103 104 105 106 107 108 109
  DLOG << " c block " << c_block;
  DLOG << " w " << w;
  DLOG << " nh " << nh;
  DLOG << " stride " << stride;
  DLOG << " offset " << offset;
  DLOG << " input_c " << input_c;
  DLOG << " dilation " << dilation;
  DLOG << " input width " << input_width;
  DLOG << " input height " << input_height;
  DLOG << " output width " << output_width;
  DLOG << " output height " << output_height;
L
liuruilong 已提交
110

L
liuruilong 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
L
liuruilong 已提交
125

L
liuruilong 已提交
126 127
  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
Y
yangfei 已提交
128

L
liuruilong 已提交
129 130 131
  status = clEnqueueNDRangeKernel(
      this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
      default_work_size.data(), NULL, 0, NULL, NULL);
L
liuruilong 已提交
132
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
133 134 135 136 137 138 139 140
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif