conv_kernel.cpp 5.0 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

Y
yangfei 已提交
29 30 31 32 33 34 35 36 37
  auto filter_ddim = param->Filter()->dims();

  std::vector<int64_t> filter_shape(
          {filter_ddim[1], filter_ddim[0], filter_ddim[2], filter_ddim[3]});
  framework::DDim ddim = framework::make_ddim(filter_shape);
  if (filter_ddim[1] == 1) {
    param->Filter()->Resize(ddim);
  }

L
liuruilong 已提交
38 39
  param->Filter()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
40

L
liuruilong 已提交
41 42 43 44
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
45 46 47 48 49 50
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
  DLOG << " width of one block: " << param->Filter()->WidthOfOneBlock();
  DLOG << " height of one block: " << param->Filter()->HeightOfOneBlock();
  DLOG << " filter dims: " << param->Filter()->dims();

L
liuruilong 已提交
51 52
  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
L
liuruilong 已提交
53
    DLOG << " here1 ";
L
liuruilong 已提交
54
    this->cl_helper_.AddKernel("conv_1x1", "conv_kernel.cl");
L
liuruilong 已提交
55

Y
yangfei 已提交
56 57 58
  } else if (param->Filter()->dims()[0] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
L
liuruilong 已提交
59
    DLOG << " here2 ";
Y
yangfei 已提交
60
    this->cl_helper_.AddKernel("depth_conv_3x3", "depthwise_conv_kernel.cl");
L
liuruilong 已提交
61

L
liuruilong 已提交
62 63
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
L
liuruilong 已提交
64
    DLOG << " here3 ";
L
liuruilong 已提交
65
    this->cl_helper_.AddKernel("conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
66

L
liuruilong 已提交
67 68 69
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
70

L
liuruilong 已提交
71 72 73 74 75
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
76 77 78 79 80 81 82
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
L
liuruilong 已提交
83
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
84 85 86 87 88 89 90 91

  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

L
liuruilong 已提交
92 93 94
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();

L
liuruilong 已提交
95 96 97
  cl_int status;

  DLOG << " begin set kernel arg ";
L
liuruilong 已提交
98 99 100 101 102 103 104 105 106 107 108
  DLOG << " c block " << c_block;
  DLOG << " w " << w;
  DLOG << " nh " << nh;
  DLOG << " stride " << stride;
  DLOG << " offset " << offset;
  DLOG << " input_c " << input_c;
  DLOG << " dilation " << dilation;
  DLOG << " input width " << input_width;
  DLOG << " input height " << input_height;
  DLOG << " output width " << output_width;
  DLOG << " output height " << output_height;
L
liuruilong 已提交
109

L
liuruilong 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
L
liuruilong 已提交
124

Y
yangfei 已提交
125

L
liuruilong 已提交
126 127
//  cl_event out_event = param.Output()->GetClEvent();
//  cl_event wait_event = param.Input()->GetClEvent();
L
liuruilong 已提交
128 129

  status =
L
liuruilong 已提交
130
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
L
liuruilong 已提交
131
                             default_work_size.data(), NULL, 0, NULL, NULL);
L
liuruilong 已提交
132
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
133 134 135 136 137 138 139 140
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif