conv_kernel.cpp 4.6 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

L
liuruilong 已提交
29 30
  param->Filter()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
31

L
liuruilong 已提交
32 33 34 35
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
36 37 38 39 40 41
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
  DLOG << " width of one block: " << param->Filter()->WidthOfOneBlock();
  DLOG << " height of one block: " << param->Filter()->HeightOfOneBlock();
  DLOG << " filter dims: " << param->Filter()->dims();

L
liuruilong 已提交
42 43
  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
L
liuruilong 已提交
44
    DLOG << " here1 ";
L
liuruilong 已提交
45
    this->cl_helper_.AddKernel("conv_1x1", "conv_kernel.cl");
L
liuruilong 已提交
46

L
liuruilong 已提交
47
  } else if (param->Filter()->dims()[1] == 1) {
L
liuruilong 已提交
48
    DLOG << " here2 ";
L
liuruilong 已提交
49
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
50

L
liuruilong 已提交
51 52
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
L
liuruilong 已提交
53
    DLOG << " here3 ";
L
liuruilong 已提交
54
    this->cl_helper_.AddKernel("conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
55

L
liuruilong 已提交
56 57 58
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
59

L
liuruilong 已提交
60 61 62 63 64
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
65 66 67 68 69 70 71
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
L
liuruilong 已提交
72
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
73 74 75 76 77 78 79 80

  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

L
liuruilong 已提交
81 82 83
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();

L
liuruilong 已提交
84 85 86
  cl_int status;

  DLOG << " begin set kernel arg ";
L
liuruilong 已提交
87 88 89 90 91 92 93 94 95 96 97
  DLOG << " c block " << c_block;
  DLOG << " w " << w;
  DLOG << " nh " << nh;
  DLOG << " stride " << stride;
  DLOG << " offset " << offset;
  DLOG << " input_c " << input_c;
  DLOG << " dilation " << dilation;
  DLOG << " input width " << input_width;
  DLOG << " input height " << input_height;
  DLOG << " output width " << output_width;
  DLOG << " output height " << output_height;
L
liuruilong 已提交
98

L
liuruilong 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
L
liuruilong 已提交
113

L
liuruilong 已提交
114 115
//  cl_event out_event = param.Output()->GetClEvent();
//  cl_event wait_event = param.Input()->GetClEvent();
L
liuruilong 已提交
116 117

  status =
L
liuruilong 已提交
118
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
L
liuruilong 已提交
119
                             default_work_size.data(), NULL, 0, NULL, NULL);
L
liuruilong 已提交
120
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
121 122 123 124 125 126 127 128
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif