mobilenetv1_light_api.cc 6.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <sys/time.h>
#include <time.h>
17
#include <cmath>
18
#include <iostream>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <vector>
21

22
#include "paddle_api.h"  // NOLINT
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31

using namespace paddle::lite_api;  // NOLINT

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

32 33 34
std::string ShapePrint(const shape_t& shape) {
  std::string shape_str{""};
  for (auto i : shape) {
35
    shape_str += std::to_string(i) + " ";
36 37 38 39
  }
  return shape_str;
}

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
template <typename T>
double compute_mean(const T* in, const size_t length) {
  double sum = 0.;
  for (size_t i = 0; i < length; ++i) {
    sum += in[i];
  }
  return sum / length;
}

template <typename T>
double compute_standard_deviation(const T* in,
                                  const size_t length,
                                  bool has_mean = false,
                                  double mean = 10000) {
  if (!has_mean) {
    mean = compute_mean<T>(in, length);
  }

  double variance = 0.;
  for (size_t i = 0; i < length; ++i) {
    variance += pow((in[i] - mean), 2);
  }
  variance /= length;
  return sqrt(variance);
}

66 67 68 69 70 71 72 73
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

void RunModel(std::string model_dir,
              const shape_t& input_shape,
74 75 76 77
              size_t repeats,
              size_t warmup,
              size_t print_output_elem,
              size_t power_mode) {
Y
Yan Chunwei 已提交
78 79
  // 1. Set MobileConfig
  MobileConfig config;
H
huzhiqiang 已提交
80 81 82 83
  config.set_model_from_file(model_dir);
  // NOTE: To load model transformed by model_optimize_tool before
  // release/v2.3.0, plese use `set_model_dir` API as listed below.
  // config.set_model_dir(model_dir);
84
  config.set_power_mode(static_cast<paddle::lite_api::PowerMode>(power_mode));
Y
Yan Chunwei 已提交
85 86 87 88 89 90 91

  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // 3. Prepare input data
  std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
92 93
  input_tensor->Resize(
      {input_shape[0], input_shape[1], input_shape[2], input_shape[3]});
Y
Yan Chunwei 已提交
94 95 96 97 98 99
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
    data[i] = 1;
  }

  // 4. Run predictor
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  for (size_t widx = 0; widx < warmup; ++widx) {
    predictor->Run();
  }

  double sum_duration = 0.0;  // millisecond;
  double max_duration = 1e-5;
  double min_duration = 1e5;
  double avg_duration = -1;
  for (size_t ridx = 0; ridx < repeats; ++ridx) {
    auto start = GetCurrentUS();

    predictor->Run();

    auto duration = (GetCurrentUS() - start) / 1000.0;
    sum_duration += duration;
    max_duration = duration > max_duration ? duration : max_duration;
    min_duration = duration < min_duration ? duration : min_duration;
    std::cout << "run_idx:" << ridx + 1 << " / " << repeats << ": " << duration
              << " ms" << std::endl;
  }
  avg_duration = sum_duration / static_cast<float>(repeats);
  std::cout << "\n======= benchmark summary =======\n"
            << "input_shape(NCHW):" << ShapePrint(input_shape) << "\n"
            << "model_dir:" << model_dir << "\n"
            << "warmup:" << warmup << "\n"
            << "repeats:" << repeats << "\n"
            << "max_duration:" << max_duration << "\n"
            << "min_duration:" << min_duration << "\n"
            << "avg_duration:" << avg_duration << "\n";
Y
Yan Chunwei 已提交
129 130

  // 5. Get output
131 132
  std::cout << "\n====== output summary ====== " << std::endl;
  size_t output_tensor_num = predictor->GetOutputNames().size();
133
  std::cout << "output tensor num:" << output_tensor_num << std::endl;
134 135 136 137 138 139

  for (size_t tidx = 0; tidx < output_tensor_num; ++tidx) {
    std::unique_ptr<const paddle::lite_api::Tensor> output_tensor =
        predictor->GetOutput(tidx);
    std::cout << "\n--- output tensor " << tidx << " ---" << std::endl;
    auto out_shape = output_tensor->shape();
140 141 142 143
    auto out_data = output_tensor->data<float>();
    auto out_mean = compute_mean<float>(out_data, ShapeProduction(out_shape));
    auto out_std_dev = compute_standard_deviation<float>(
        out_data, ShapeProduction(out_shape), true, out_mean);
144

145
    std::cout << "output shape(NCHW):" << ShapePrint(out_shape) << std::endl;
146 147 148
    std::cout << "output tensor " << tidx
              << " elem num:" << ShapeProduction(out_shape) << std::endl;
    std::cout << "output tensor " << tidx
149 150
              << " standard deviation:" << out_std_dev << std::endl;
    std::cout << "output tensor " << tidx << " mean value:" << out_mean
151
              << std::endl;
152 153 154 155 156 157 158 159

    // print output
    if (print_output_elem) {
      for (int i = 0; i < ShapeProduction(out_shape); ++i) {
        std::cout << "out[" << tidx << "][" << i
                  << "]:" << output_tensor->data<float>()[i] << std::endl;
      }
    }
Y
Yan Chunwei 已提交
160 161 162 163
  }
}

int main(int argc, char** argv) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  shape_t input_shape{1, 3, 224, 224};  // shape_t ==> std::vector<int64_t>
  int repeats = 10;
  int warmup = 10;
  int print_output_elem = 0;

  if (argc > 2 && argc < 9) {
    std::cerr << "usage: ./" << argv[0] << "\n"
              << "  <naive_buffer_model_dir>\n"
              << "  <input_n>\n"
              << "  <input_c>\n"
              << "  <input_h>\n"
              << "  <input_w>\n"
              << "  <repeats>\n"
              << "  <warmup>\n"
              << "  <print_output>" << std::endl;
    return 0;
180
  }
181

182
  std::string model_dir = argv[1];
183 184
  if (argc >= 9) {
    input_shape[0] = atoi(argv[2]);
185 186 187
    input_shape[1] = atoi(argv[3]);
    input_shape[2] = atoi(argv[4]);
    input_shape[3] = atoi(argv[5]);
188 189 190 191
    repeats = atoi(argv[6]);
    warmup = atoi(argv[7]);
    print_output_elem = atoi(argv[8]);
  }
192 193 194 195 196 197 198 199 200
  // set arm power mode:
  // 0 for big cluster, high performance
  // 1 for little cluster
  // 2 for all cores
  // 3 for no bind
  size_t power_mode = 0;

  RunModel(
      model_dir, input_shape, repeats, warmup, print_output_elem, power_mode);
201

Y
Yan Chunwei 已提交
202 203
  return 0;
}