mobilenetv1_light_api.cc 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <sys/time.h>
#include <time.h>
17
#include <iostream>
18
#include <string>
Y
Yan Chunwei 已提交
19
#include <vector>
20

21
#include "paddle_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30

using namespace paddle::lite_api;  // NOLINT

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

31 32 33
std::string ShapePrint(const shape_t& shape) {
  std::string shape_str{""};
  for (auto i : shape) {
34
    shape_str += std::to_string(i) + " ";
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  }
  return shape_str;
}

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

void RunModel(std::string model_dir,
              const shape_t& input_shape,
              int repeats,
              int warmup,
              int print_output_elem) {
Y
Yan Chunwei 已提交
50 51
  // 1. Set MobileConfig
  MobileConfig config;
H
huzhiqiang 已提交
52 53 54 55
  config.set_model_from_file(model_dir);
  // NOTE: To load model transformed by model_optimize_tool before
  // release/v2.3.0, plese use `set_model_dir` API as listed below.
  // config.set_model_dir(model_dir);
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62

  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // 3. Prepare input data
  std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
63 64
  input_tensor->Resize(
      {input_shape[0], input_shape[1], input_shape[2], input_shape[3]});
Y
Yan Chunwei 已提交
65 66 67 68 69 70
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
    data[i] = 1;
  }

  // 4. Run predictor
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  for (size_t widx = 0; widx < warmup; ++widx) {
    predictor->Run();
  }

  double sum_duration = 0.0;  // millisecond;
  double max_duration = 1e-5;
  double min_duration = 1e5;
  double avg_duration = -1;
  for (size_t ridx = 0; ridx < repeats; ++ridx) {
    auto start = GetCurrentUS();

    predictor->Run();

    auto duration = (GetCurrentUS() - start) / 1000.0;
    sum_duration += duration;
    max_duration = duration > max_duration ? duration : max_duration;
    min_duration = duration < min_duration ? duration : min_duration;
    std::cout << "run_idx:" << ridx + 1 << " / " << repeats << ": " << duration
              << " ms" << std::endl;
  }
  avg_duration = sum_duration / static_cast<float>(repeats);
  std::cout << "\n======= benchmark summary =======\n"
            << "input_shape(NCHW):" << ShapePrint(input_shape) << "\n"
            << "model_dir:" << model_dir << "\n"
            << "warmup:" << warmup << "\n"
            << "repeats:" << repeats << "\n"
            << "max_duration:" << max_duration << "\n"
            << "min_duration:" << min_duration << "\n"
            << "avg_duration:" << avg_duration << "\n";
Y
Yan Chunwei 已提交
100 101

  // 5. Get output
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  std::cout << "\n====== output summary ====== " << std::endl;
  size_t output_tensor_num = predictor->GetOutputNames().size();
  std::cout << "output tesnor num:" << output_tensor_num << std::endl;

  for (size_t tidx = 0; tidx < output_tensor_num; ++tidx) {
    std::unique_ptr<const paddle::lite_api::Tensor> output_tensor =
        predictor->GetOutput(tidx);
    std::cout << "\n--- output tensor " << tidx << " ---" << std::endl;
    auto out_shape = output_tensor->shape();
    std::cout << "out_shape(NCHW):" << ShapePrint(out_shape) << std::endl;

    float sum = 0.f;
    for (int i = 0; i < ShapeProduction(out_shape); ++i) {
      sum += output_tensor->data<float>()[i];
    }
    std::cout << "output tensor " << tidx
              << " elem num:" << ShapeProduction(out_shape) << std::endl;
    std::cout << "output tensor " << tidx << " sum value:" << sum << std::endl;
    std::cout << "output tensor " << tidx
              << " mean value:" << sum / ShapeProduction(out_shape)
122
              << std::endl;
123 124 125 126 127 128 129 130

    // print output
    if (print_output_elem) {
      for (int i = 0; i < ShapeProduction(out_shape); ++i) {
        std::cout << "out[" << tidx << "][" << i
                  << "]:" << output_tensor->data<float>()[i] << std::endl;
      }
    }
Y
Yan Chunwei 已提交
131 132 133 134
  }
}

int main(int argc, char** argv) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  shape_t input_shape{1, 3, 224, 224};  // shape_t ==> std::vector<int64_t>
  int repeats = 10;
  int warmup = 10;
  int print_output_elem = 0;

  if (argc > 2 && argc < 9) {
    std::cerr << "usage: ./" << argv[0] << "\n"
              << "  <naive_buffer_model_dir>\n"
              << "  <input_n>\n"
              << "  <input_c>\n"
              << "  <input_h>\n"
              << "  <input_w>\n"
              << "  <repeats>\n"
              << "  <warmup>\n"
              << "  <print_output>" << std::endl;
    return 0;
151
  }
152

153
  std::string model_dir = argv[1];
154 155
  if (argc >= 9) {
    input_shape[0] = atoi(argv[2]);
156 157 158
    input_shape[1] = atoi(argv[3]);
    input_shape[2] = atoi(argv[4]);
    input_shape[3] = atoi(argv[5]);
159 160 161 162 163 164 165
    repeats = atoi(argv[6]);
    warmup = atoi(argv[7]);
    print_output_elem = atoi(argv[8]);
  }

  RunModel(model_dir, input_shape, repeats, warmup, print_output_elem);

Y
Yan Chunwei 已提交
166 167
  return 0;
}