mobilenetv1_light_api.cc 2.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <iostream>
Y
Yan Chunwei 已提交
16
#include <vector>
17
#include "paddle_api.h"  // NOLINT
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26

using namespace paddle::lite_api;  // NOLINT

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

27
void RunModel(std::string model_dir) {
Y
Yan Chunwei 已提交
28 29
  // 1. Set MobileConfig
  MobileConfig config;
H
huzhiqiang 已提交
30 31 32 33
  config.set_model_from_file(model_dir);
  // NOTE: To load model transformed by model_optimize_tool before
  // release/v2.3.0, plese use `set_model_dir` API as listed below.
  // config.set_model_dir(model_dir);
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // 3. Prepare input data
  std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
  input_tensor->Resize({1, 3, 224, 224});
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
    data[i] = 1;
  }

  // 4. Run predictor
  predictor->Run();

  // 5. Get output
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
53
  std::cout << "Output shape " << output_tensor->shape()[1] << std::endl;
Y
Yan Chunwei 已提交
54
  for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) {
55 56
    std::cout << "Output[" << i << "]: " << output_tensor->data<float>()[i]
              << std::endl;
Y
Yan Chunwei 已提交
57 58 59 60
  }
}

int main(int argc, char** argv) {
61 62 63 64 65 66
  if (argc < 2) {
    std::cerr << "[ERROR] usage: ./" << argv[0] << " naive_buffer_model_dir\n";
    exit(1);
  }
  std::string model_dir = argv[1];
  RunModel(model_dir);
Y
Yan Chunwei 已提交
67 68
  return 0;
}