conv.py 13.8 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements common layers to help building
graph neural networks.
"""
import paddle.fluid as fluid
from pgl.utils import paddle_helper
F
fengshikun01 已提交
19
from pgl import message_passing
Y
yelrose 已提交
20

F
fengshikun01 已提交
21
__all__ = ['gcn', 'gat', 'gin', 'gaan', 'gen_conv']
Y
yelrose 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def gcn(gw, feature, hidden_size, activation, name, norm=None):
    """Implementation of graph convolutional neural networks (GCN)

    This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION
    WITH GRAPH CONVOLUTIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gcn.

        activation: The activation for the output.

        name: Gcn layer names.

        norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
              be tensor with shape (num_nodes,) and dtype float32.

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    size = feature.shape[-1]
    if size > hidden_size:
        feature = fluid.layers.fc(feature,
                                  size=hidden_size,
                                  bias_attr=False,
Y
Yelrose 已提交
56
                                  param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69

    if norm is not None:
        feature = feature * norm

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

    if size > hidden_size:
        output = gw.recv(msg, "sum")
    else:
        output = gw.recv(msg, "sum")
        output = fluid.layers.fc(output,
                                 size=hidden_size,
                                 bias_attr=False,
Y
Yelrose 已提交
70
                                 param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    if norm is not None:
        output = output * norm

    bias = fluid.layers.create_parameter(
        shape=[hidden_size],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output


def gat(gw,
        feature,
        hidden_size,
        activation,
        name,
        num_heads=8,
        feat_drop=0.6,
        attn_drop=0.6,
        is_test=False):
    """Implementation of graph attention networks (GAT)

    This is an implementation of the paper GRAPH ATTENTION NETWORKS
    (https://arxiv.org/abs/1710.10903).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gat.

        activation: The activation for the output.

        name: Gat layer names.

        num_heads: The head number in gat.

        feat_drop: Dropout rate for feature.

        attn_drop: Dropout rate for attention.

        is_test: Whether in test phrase.

    Return:
        A tensor with shape (num_nodes, hidden_size * num_heads)
    """

    def send_attention(src_feat, dst_feat, edge_feat):
        output = src_feat["left_a"] + dst_feat["right_a"]
        output = fluid.layers.leaky_relu(
            output, alpha=0.2)  # (num_edges, num_heads)
        return {"alpha": output, "h": src_feat["h"]}

    def reduce_attention(msg):
        alpha = msg["alpha"]  # lod-tensor (batch_size, seq_len, num_heads)
        h = msg["h"]
        alpha = paddle_helper.sequence_softmax(alpha)
        old_h = h
        h = fluid.layers.reshape(h, [-1, num_heads, hidden_size])
        alpha = fluid.layers.reshape(alpha, [-1, num_heads, 1])
        if attn_drop > 1e-15:
            alpha = fluid.layers.dropout(
                alpha,
                dropout_prob=attn_drop,
                is_test=is_test,
                dropout_implementation="upscale_in_train")
        h = h * alpha
        h = fluid.layers.reshape(h, [-1, num_heads * hidden_size])
        h = fluid.layers.lod_reset(h, old_h)
        return fluid.layers.sequence_pool(h, "sum")

    if feat_drop > 1e-15:
        feature = fluid.layers.dropout(
            feature,
            dropout_prob=feat_drop,
            is_test=is_test,
            dropout_implementation='upscale_in_train')

    ft = fluid.layers.fc(feature,
                         hidden_size * num_heads,
                         bias_attr=False,
Y
Yelrose 已提交
155
                         param_attr=fluid.ParamAttr(name=name + '_weight'))
Y
yelrose 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    left_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_l_A')
    right_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_r_A')
    reshape_ft = fluid.layers.reshape(ft, [-1, num_heads, hidden_size])
    left_a_value = fluid.layers.reduce_sum(reshape_ft * left_a, -1)
    right_a_value = fluid.layers.reduce_sum(reshape_ft * right_a, -1)

    msg = gw.send(
        send_attention,
        nfeat_list=[("h", ft), ("left_a", left_a_value),
                    ("right_a", right_a_value)])
    output = gw.recv(msg, reduce_attention)
    bias = fluid.layers.create_parameter(
        shape=[hidden_size * num_heads],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    bias.stop_gradient = True
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output
W
Webbley 已提交
181 182


W
Webbley 已提交
183 184 185 186 187 188 189
def gin(gw,
        feature,
        hidden_size,
        activation,
        name,
        init_eps=0.0,
        train_eps=False):
W
Webbley 已提交
190 191 192 193 194
    """Implementation of Graph Isomorphism Network (GIN) layer.

    This is an implementation of the paper How Powerful are Graph Neural Networks?
    (https://arxiv.org/pdf/1810.00826.pdf).

195 196 197
    In their implementation, all MLPs have 2 layers. Batch normalization is applied
    on every hidden layer.

W
Webbley 已提交
198 199 200 201 202 203 204
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        name: GIN layer names.

W
Webbley 已提交
205 206 207 208
        hidden_size: The hidden size for gin.

        activation: The activation for the output.

W
Webbley 已提交
209 210 211 212 213 214 215
        init_eps: float, optional
            Initial :math:`\epsilon` value, default is 0.

        train_eps: bool, optional
            if True, :math:`\epsilon` will be a learnable parameter.

    Return:
W
Webbley 已提交
216
        A tensor with shape (num_nodes, hidden_size).
W
Webbley 已提交
217 218 219 220 221 222 223 224
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    epsilon = fluid.layers.create_parameter(
        shape=[1, 1],
        dtype="float32",
W
Webbley 已提交
225 226 227
        attr=fluid.ParamAttr(name="%s_eps" % name),
        default_initializer=fluid.initializer.ConstantInitializer(
            value=init_eps))
W
Webbley 已提交
228 229 230 231 232

    if not train_eps:
        epsilon.stop_gradient = True

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
W
Webbley 已提交
233
    output = gw.recv(msg, "sum") + feature * (epsilon + 1.0)
W
Webbley 已提交
234

W
Webbley 已提交
235 236
    output = fluid.layers.fc(output,
                             size=hidden_size,
237 238 239 240
                             act=None,
                             param_attr=fluid.ParamAttr(name="%s_w_0" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_0" % name))

W
Webbley 已提交
241 242 243 244 245 246 247 248 249 250
    output = fluid.layers.layer_norm(
        output,
        begin_norm_axis=1,
        param_attr=fluid.ParamAttr(
            name="norm_scale_%s" % (name),
            initializer=fluid.initializer.Constant(1.0)),
        bias_attr=fluid.ParamAttr(
            name="norm_bias_%s" % (name),
            initializer=fluid.initializer.Constant(0.0)), )

251 252
    if activation is not None:
        output = getattr(fluid.layers, activation)(output)
253 254 255 256 257 258

    output = fluid.layers.fc(output,
                             size=hidden_size,
                             act=activation,
                             param_attr=fluid.ParamAttr(name="%s_w_1" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_1" % name))
W
Webbley 已提交
259

W
Webbley 已提交
260
    return output
W
wangwenjin 已提交
261

W
wangwenjin 已提交
262 263 264

def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
    """Implementation of GaAN"""
W
wangwenjin 已提交
265

W
wangwenjin 已提交
266
    def send_func(src_feat, dst_feat, edge_feat):
W
wangwenjin 已提交
267 268
        # 计算每条边上的注意力分数
        # E * (M * D1), 每个 dst 点都查询它的全部邻边的 src 点
W
wangwenjin 已提交
269
        feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
W
wangwenjin 已提交
270 271
        # E * M * D1
        old = feat_query
W
wangwenjin 已提交
272 273
        feat_query = fluid.layers.reshape(feat_query, [-1, heads, hidden_size_a])
        feat_key = fluid.layers.reshape(feat_key, [-1, heads, hidden_size_a])
W
wangwenjin 已提交
274
        # E * M
W
wangwenjin 已提交
275 276 277 278 279 280 281 282 283
        alpha = fluid.layers.reduce_sum(feat_key * feat_query, dim=-1)

        return {'dst_node_feat': dst_feat['node_feat'],
                'src_node_feat': src_feat['node_feat'],
                'feat_value': src_feat['feat_value'],
                'alpha': alpha,
                'feat_gate': src_feat['feat_gate']}

    def recv_func(message):
W
wangwenjin 已提交
284 285 286 287 288 289 290 291 292 293
        # 每条边的终点的特征
        dst_feat = message['dst_node_feat']
        # 每条边的出发点的特征
        src_feat = message['src_node_feat']
        # 每个中心点自己的特征
        x = fluid.layers.sequence_pool(dst_feat, 'average')
        # 每个中心点的邻居的特征的平均值
        z = fluid.layers.sequence_pool(src_feat, 'average')

        # 计算 gate
W
wangwenjin 已提交
294 295 296
        feat_gate = message['feat_gate']
        g_max = fluid.layers.sequence_pool(feat_gate, 'max')
        g = fluid.layers.concat([x, g_max, z], axis=1)
W
wangwenjin 已提交
297
        g = fluid.layers.fc(g, heads, bias_attr=False, act="sigmoid")
W
wangwenjin 已提交
298

W
wangwenjin 已提交
299
        # softmax
W
wangwenjin 已提交
300
        alpha = message['alpha']
W
wangwenjin 已提交
301
        alpha = paddle_helper.sequence_softmax(alpha) # E * M
W
wangwenjin 已提交
302

W
wangwenjin 已提交
303
        feat_value = message['feat_value'] # E * (M * D2)
W
wangwenjin 已提交
304
        old = feat_value
W
wangwenjin 已提交
305
        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # E * M * D2
W
wangwenjin 已提交
306
        feat_value = fluid.layers.elementwise_mul(feat_value, alpha, axis=0)
W
wangwenjin 已提交
307
        feat_value = fluid.layers.reshape(feat_value, [-1, heads*hidden_size_v]) # E * (M * D2)
W
wangwenjin 已提交
308
        feat_value = fluid.layers.lod_reset(feat_value, old)
W
wangwenjin 已提交
309 310 311 312 313

        feat_value = fluid.layers.sequence_pool(feat_value, 'sum') # N * (M * D2)

        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # N * M * D2

W
wangwenjin 已提交
314
        output = fluid.layers.elementwise_mul(feat_value, g, axis=0)
W
wangwenjin 已提交
315 316
        output = fluid.layers.reshape(output, [-1, heads * hidden_size_v]) # N * (M * D2)

W
wangwenjin 已提交
317 318 319 320
        output = fluid.layers.concat([x, output], axis=1)

        return output

W
wangwenjin 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    # feature N * D

    # 计算每个点自己需要发送出去的内容
    # 投影后的特征向量
    # N * (D1 * M)
    feat_key = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_key'))
    # N * (D2 * M)
    feat_value = fluid.layers.fc(feature, hidden_size_v * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_value'))
    # N * (D1 * M)
    feat_query = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_query'))
    # N * Dm
    feat_gate = fluid.layers.fc(feature, hidden_size_m, bias_attr=False, 
                                param_attr=fluid.ParamAttr(name=name + '_project_gate'))

    # send 阶段

    message = gw.send(
        send_func,
        nfeat_list=[('node_feat', feature), ('feat_key', feat_key), ('feat_value', feat_value),
                    ('feat_query', feat_query), ('feat_gate', feat_gate)],
        efeat_list=None,
    )

    # 聚合邻居特征
W
wangwenjin 已提交
348 349
    output = gw.recv(message, recv_func)
    output = fluid.layers.fc(output, hidden_size_o, bias_attr=False,
W
wangwenjin 已提交
350 351
                            param_attr=fluid.ParamAttr(name=name + '_project_output'))
    output = fluid.layers.leaky_relu(output, alpha=0.1)
W
wangwenjin 已提交
352 353 354
    output = fluid.layers.dropout(output, dropout_prob=0.1)

    return output
F
fengshikun01 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406


def gen_conv(gw,
        feature,
        name,
        beta=None):
    """Implementation of GENeralized Graph Convolution (GENConv), see the paper
    "DeeperGCN: All You Need to Train Deeper GCNs" in
    https://arxiv.org/pdf/2006.07739.pdf

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        beta: [0, +infinity] or "dynamic" or None

        name: deeper gcn layer names.

    Return:
        A tensor with shape (num_nodes, feature_size)
    """
   
    if beta == "dynamic":
        beta = fluid.layers.create_parameter(
                shape=[1],
                dtype='float32',
                default_initializer=
                    fluid.initializer.ConstantInitializer(value=1.0),
                name=name + '_beta')
    
    # message passing
    msg = gw.send(message_passing.copy_send, nfeat_list=[("h", feature)])
    output = gw.recv(msg, message_passing.softmax_agg(beta))
    
    # msg norm
    output = message_passing.msg_norm(feature, output, name)
    output = feature + output
    
    output = fluid.layers.fc(output,
                     feature.shape[-1],
                     bias_attr=False,
                     act="relu",
                     param_attr=fluid.ParamAttr(name=name + '_weight1'))
    
    output = fluid.layers.fc(output,
                     feature.shape[-1],
                     bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_weight2'))

    return output