graph_wrapper.py 27.1 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package provides interface to help building static computational graph
for PaddlePaddle.
"""

import warnings
import numpy as np
import paddle.fluid as fluid
Y
Yelrose 已提交
22
import paddle.fluid.layers as L
Y
yelrose 已提交
23 24 25 26 27 28 29

from pgl.utils import op
from pgl.utils import paddle_helper
from pgl.utils.logger import log

__all__ = ["BaseGraphWrapper", "GraphWrapper", "StaticGraphWrapper"]

Y
Yelrose 已提交
30
def send(src, dst, nfeat, efeat, message_func):
Y
yelrose 已提交
31 32
    """Send message from src to dst.
    """
Y
Yelrose 已提交
33 34
    src_feat = op.RowReader(nfeat, src)
    dst_feat = op.RowReader(nfeat, dst)
Y
yelrose 已提交
35 36 37 38
    msg = message_func(src_feat, dst_feat, efeat)
    return msg


W
Webbley 已提交
39 40
def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, num_nodes,
         num_edges):
Y
yelrose 已提交
41 42 43 44 45 46 47 48
    """Recv message from given msg to dst nodes.
    """
    if reduce_function == "sum":
        if isinstance(msg, dict):
            raise TypeError("The message for build-in function"
                            " should be Tensor not dict.")

        try:
W
Webbley 已提交
49
            out_dim = msg.shape[-1]
Y
Yelrose 已提交
50
            init_output = L.fill_constant(
51
                shape=[num_nodes, out_dim], value=0, dtype=msg.dtype)
Y
yelrose 已提交
52
            init_output.stop_gradient = False
Y
Yelrose 已提交
53
            empty_msg_flag = L.cast(num_edges > 0, dtype=msg.dtype)
W
Webbley 已提交
54
            msg = msg * empty_msg_flag
Y
yelrose 已提交
55 56 57 58 59 60 61
            output = paddle_helper.scatter_add(init_output, dst, msg)
            return output
        except TypeError as e:
            warnings.warn(
                "scatter_add is not supported with paddle version <= 1.5")

            def sum_func(message):
Y
Yelrose 已提交
62
                return L.sequence_pool(message, "sum")
Y
yelrose 已提交
63 64 65 66 67

            reduce_function = sum_func

    bucketed_msg = op.nested_lod_reset(msg, bucketing_index)
    output = reduce_function(bucketed_msg)
W
Webbley 已提交
68
    output_dim = output.shape[-1]
69

Y
Yelrose 已提交
70
    empty_msg_flag = L.cast(num_edges > 0, dtype=output.dtype)
W
Webbley 已提交
71
    output = output * empty_msg_flag
Y
yelrose 已提交
72

Y
Yelrose 已提交
73
    init_output = L.fill_constant(
74
        shape=[num_nodes, output_dim], value=0, dtype=output.dtype)
W
Webbley 已提交
75
    init_output.stop_gradient = True
Y
Yelrose 已提交
76
    final_output = L.scatter(init_output, uniq_dst, output)
W
Webbley 已提交
77
    return final_output
Y
yelrose 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


class BaseGraphWrapper(object):
    """This module implement base class for graph wrapper.

    Currently our PGL is developed based on static computational mode of
    paddle (we'll support dynamic computational model later). We need to build
    model upon a virtual data holder. BaseGraphWrapper provide a virtual
    graph structure that users can build deep learning models
    based on this virtual graph. And then feed real graph data to run
    the models. Moreover, we provide convenient message-passing interface
    (send & recv) for building graph neural networks.

    NOTICE: Don't use this BaseGraphWrapper directly. Use :code:`GraphWrapper`
    and :code:`StaticGraphWrapper` to create graph wrapper instead.
    """

    def __init__(self):
L
liweibin 已提交
96 97
        self.node_feat_tensor_dict = {}
        self.edge_feat_tensor_dict = {}
Y
yelrose 已提交
98 99 100 101 102 103 104
        self._edges_src = None
        self._edges_dst = None
        self._num_nodes = None
        self._indegree = None
        self._edge_uniq_dst = None
        self._edge_uniq_dst_count = None
        self._node_ids = None
W
Webbley 已提交
105 106
        self._graph_lod = None
        self._num_graph = None
Y
Yelrose 已提交
107
        self._num_edges = None
L
liweibin 已提交
108 109 110 111
        self._data_name_prefix = ""

    def __repr__(self):
        return self._data_name_prefix
Y
yelrose 已提交
112

Y
Yelrose 已提交
113
    def send(self, message_func, nfeat_list=None, efeat_list=None):
Y
yelrose 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        """Send message from all src nodes to dst nodes.

        The UDF message function should has the following format.

        .. code-block:: python

            def message_func(src_feat, dst_feat, edge_feat):
                '''
                    Args:
                        src_feat: the node feat dict attached to the src nodes.
                        dst_feat: the node feat dict attached to the dst nodes.
                        edge_feat: the edge feat dict attached to the
                                   corresponding (src, dst) edges.

                    Return:
                        It should return a tensor or a dictionary of tensor. And each tensor
                        should have a shape of (num_edges, dims).
                '''
                pass

        Args:
            message_func: UDF function.
            nfeat_list: a list of names or tuple (name, tensor)
            efeat_list: a list of names or tuple (name, tensor)

        Return:
            A dictionary of tensor representing the message. Each of the values
            in the dictionary has a shape (num_edges, dim) which should be collected
            by :code:`recv` function.
        """
        if efeat_list is None:
            efeat_list = {}
Y
Yelrose 已提交
146

Y
yelrose 已提交
147 148 149 150 151
        if nfeat_list is None:
            nfeat_list = {}

        src, dst = self.edges
        nfeat = {}
Y
Yelrose 已提交
152

Y
yelrose 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        for feat in nfeat_list:
            if isinstance(feat, str):
                nfeat[feat] = self.node_feat[feat]
            else:
                name, tensor = feat
                nfeat[name] = tensor

        efeat = {}
        for feat in efeat_list:
            if isinstance(feat, str):
                efeat[feat] = self.edge_feat[feat]
            else:
                name, tensor = feat
                efeat[name] = tensor

Y
Yelrose 已提交
168
        msg = send(src, dst, nfeat, efeat, message_func)
Y
yelrose 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        return msg

    def recv(self, msg, reduce_function):
        """Recv message and aggregate the message by reduce_fucntion

        The UDF reduce_function function should has the following format.

        .. code-block:: python

            def reduce_func(msg):
                '''
                    Args:
                        msg: A LodTensor or a dictionary of LodTensor whose batch_size
                             is equals to the number of unique dst nodes.

                    Return:
                        It should return a tensor with shape (batch_size, out_dims). The
                        batch size should be the same as msg.
                '''
                pass

        Args:
            msg: A tensor or a dictionary of tensor created by send function..

            reduce_function: UDF reduce function or strings "sum" as built-in function.
                             The built-in "sum" will use scatter_add to optimized the speed.

        Return:
            A tensor with shape (num_nodes, out_dims). The output for nodes with no message
            will be zeros.
        """
        output = recv(
            dst=self._edges_dst,
            uniq_dst=self._edge_uniq_dst,
Y
Yelrose 已提交
203
            bucketing_index=self._edge_uniq_dst_count,
Y
yelrose 已提交
204 205
            msg=msg,
            reduce_function=reduce_function,
W
Webbley 已提交
206 207
            num_edges=self._num_edges,
            num_nodes=self._num_nodes)
Y
yelrose 已提交
208 209 210 211 212 213 214 215
        return output

    @property
    def edges(self):
        """Return a tuple of edge Tensor (src, dst).

        Return:
            A tuple of Tensor (src, dst). Src and dst are both
Y
Yelrose 已提交
216
            tensor with shape (num_edges, ) and dtype int64.
Y
yelrose 已提交
217 218 219 220 221 222 223 224
        """
        return self._edges_src, self._edges_dst

    @property
    def num_nodes(self):
        """Return a variable of number of nodes

        Return:
Y
Yelrose 已提交
225
            A variable with shape (1,) as the number of nodes in int64.
Y
yelrose 已提交
226 227 228
        """
        return self._num_nodes

W
Webbley 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    @property
    def graph_lod(self):
        """Return graph index for graphs

        Return:
            A variable with shape [None ]  as the Lod information of multiple-graph.
        """
        return self._graph_lod

    @property
    def num_graph(self):
        """Return a variable of number of graphs

        Return:
            A variable with shape (1,) as the number of Graphs in int64.
        """
        return self._num_graph

Y
yelrose 已提交
247 248 249 250 251 252 253 254
    @property
    def edge_feat(self):
        """Return a dictionary of tensor representing edge features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
255
        return self.edge_feat_tensor_dict
Y
yelrose 已提交
256 257 258 259 260 261 262 263 264

    @property
    def node_feat(self):
        """Return a dictionary of tensor representing node features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
265
        return self.node_feat_tensor_dict
Y
yelrose 已提交
266 267 268 269 270

    def indegree(self):
        """Return the indegree tensor for all nodes.

        Return:
Y
Yelrose 已提交
271
            A tensor of shape (num_nodes, ) in int64.
Y
yelrose 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285
        """
        return self._indegree


class StaticGraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that the data of the graph won't
    be changed and it can be fit into the GPU or CPU memory. This
    can reduce the time of swapping large data from GPU and CPU.

    Args:
        name: The graph data prefix

        graph: The static graph that should be put into memory

W
Webbley 已提交
286
        place: fluid.CPUPlace or fluid.CUDAPlace(n) indicating the
Y
yelrose 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
               device to hold the graph data.

    Examples:

        If we have a immutable graph and it can be fit into the GPU or CPU.
        we can just use a :code:`StaticGraphWrapper` to pre-place the graph
        data into devices.

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import StaticGraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = StaticGraphWrapper(name="graph",
                        graph=graph,
                        place=place)

            # build your deep graph model

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            # Initialize graph data
            graph_wrapper.initialize(place)
    """

    def __init__(self, name, graph, place):
        super(StaticGraphWrapper, self).__init__()
L
liweibin 已提交
333
        self._data_name_prefix = name
Y
yelrose 已提交
334 335 336 337 338 339 340 341 342 343 344
        self._initializers = []
        self.__create_graph_attr(graph)

    def __create_graph_attr(self, graph):
        """Create graph attributes for paddlepaddle.
        """
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
345 346
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
W
Webbley 已提交
347 348 349 350 351 352 353 354 355 356 357
        graph_lod = graph.graph_lod
        num_graph = graph.num_graph

        num_edges = len(src)
        if num_edges == 0:
            # Fake Graph
            src = np.array([0], dtype="int64")
            dst = np.array([0], dtype="int64")
            eid = np.array([0], dtype="int64")
            uniq_dst_count = np.array([0, 1], dtype="int32")
            uniq_dst = np.array([0], dtype="int64")
Y
yelrose 已提交
358 359 360 361 362 363 364 365 366 367

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

        self.__create_graph_node_feat(node_feat, self._initializers)
        self.__create_graph_edge_feat(edge_feat, self._initializers)

W
Webbley 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381
        self._num_edges, init = paddle_helper.constant(
            dtype="int64",
            value=np.array(
                [num_edges], dtype="int64"),
            name=self._data_name_prefix + '/num_edges')
        self._initializers.append(init)

        self._num_graph, init = paddle_helper.constant(
            dtype="int64",
            value=np.array(
                [num_graph], dtype="int64"),
            name=self._data_name_prefix + '/num_graph')
        self._initializers.append(init)

Y
yelrose 已提交
382
        self._edges_src, init = paddle_helper.constant(
Y
Yelrose 已提交
383
            dtype="int64",
Y
yelrose 已提交
384
            value=src,
L
liweibin 已提交
385
            name=self._data_name_prefix + '/edges_src')
Y
yelrose 已提交
386 387 388
        self._initializers.append(init)

        self._edges_dst, init = paddle_helper.constant(
Y
Yelrose 已提交
389
            dtype="int64",
Y
yelrose 已提交
390
            value=dst,
L
liweibin 已提交
391
            name=self._data_name_prefix + '/edges_dst')
Y
yelrose 已提交
392 393 394
        self._initializers.append(init)

        self._num_nodes, init = paddle_helper.constant(
Y
Yelrose 已提交
395
            dtype="int64",
Y
yelrose 已提交
396 397
            hide_batch_size=False,
            value=np.array([graph.num_nodes]),
L
liweibin 已提交
398
            name=self._data_name_prefix + '/num_nodes')
Y
yelrose 已提交
399 400 401
        self._initializers.append(init)

        self._edge_uniq_dst, init = paddle_helper.constant(
L
liweibin 已提交
402
            name=self._data_name_prefix + "/uniq_dst",
Y
Yelrose 已提交
403
            dtype="int64",
Y
yelrose 已提交
404 405 406 407
            value=uniq_dst)
        self._initializers.append(init)

        self._edge_uniq_dst_count, init = paddle_helper.constant(
L
liweibin 已提交
408
            name=self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
409 410 411 412
            dtype="int32",
            value=uniq_dst_count)
        self._initializers.append(init)

W
Webbley 已提交
413 414 415 416 417 418
        self._graph_lod, init = paddle_helper.constant(
            name=self._data_name_prefix + "/graph_lod",
            dtype="int32",
            value=graph_lod)
        self._initializers.append(init)

Y
Yelrose 已提交
419
        node_ids_value = np.arange(0, graph.num_nodes, dtype="int64")
Y
yelrose 已提交
420
        self._node_ids, init = paddle_helper.constant(
L
liweibin 已提交
421
            name=self._data_name_prefix + "/node_ids",
Y
Yelrose 已提交
422
            dtype="int64",
Y
yelrose 已提交
423 424 425 426
            value=node_ids_value)
        self._initializers.append(init)

        self._indegree, init = paddle_helper.constant(
L
liweibin 已提交
427
            name=self._data_name_prefix + "/indegree",
Y
Yelrose 已提交
428
            dtype="int64",
Y
yelrose 已提交
429 430 431 432 433 434 435 436 437
            value=indegree)
        self._initializers.append(init)

    def __create_graph_node_feat(self, node_feat, collector):
        """Convert node features into paddlepaddle tensor.
        """
        for node_feat_name, node_feat_value in node_feat.items():
            node_feat_shape = node_feat_value.shape
            node_feat_dtype = node_feat_value.dtype
L
liweibin 已提交
438
            self.node_feat_tensor_dict[
Y
yelrose 已提交
439
                node_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
440
                    name=self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
441
                    node_feat_name,
Y
yelrose 已提交
442 443 444 445 446 447 448 449 450 451
                    dtype=node_feat_dtype,
                    value=node_feat_value)
            collector.append(init)

    def __create_graph_edge_feat(self, edge_feat, collector):
        """Convert edge features into paddlepaddle tensor.
        """
        for edge_feat_name, edge_feat_value in edge_feat.items():
            edge_feat_shape = edge_feat_value.shape
            edge_feat_dtype = edge_feat_value.dtype
L
liweibin 已提交
452
            self.edge_feat_tensor_dict[
Y
yelrose 已提交
453
                edge_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
454
                    name=self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
455
                    edge_feat_name,
Y
yelrose 已提交
456 457 458 459 460 461 462 463
                    dtype=edge_feat_dtype,
                    value=edge_feat_value)
            collector.append(init)

    def initialize(self, place):
        """Placing the graph data into the devices.

        Args:
W
Webbley 已提交
464
            place: fluid.CPUPlace or fluid.CUDAPlace(n) indicating the
Y
yelrose 已提交
465 466 467 468 469 470 471 472 473 474 475
                   device to hold the graph data.
        """
        log.info(
            "StaticGraphWrapper.initialize must be called after startup program"
        )
        for init_func in self._initializers:
            init_func(place)


class GraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that creates a graph data holders
Y
Yelrose 已提交
476
    that attributes and features in the graph are :code:`L.data`.
Y
yelrose 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    And we provide interface :code:`to_feed` to help converting :code:`Graph`
    data into :code:`feed_dict`.

    Args:
        name: The graph data prefix

        node_feat: A list of tuples that decribe the details of node
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.node_feat_info()`
                   to get the node_feat settings.

        edge_feat: A list of tuples that decribe the details of edge
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.edge_feat_info()`
                   to get the edge_feat settings.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import GraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = GraphWrapper(name="graph",
                        node_feat=graph.node_feat_info(),
                        edge_feat=graph.edge_feat_info())

            # build your deep graph model
            ...

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            for i in range(10):
                feed_dict = graph_wrapper.to_feed(graph)
                ret = exe.run(fetch_list=[...], feed=feed_dict )
    """

Y
yelrose 已提交
535
    def __init__(self, name, node_feat=[], edge_feat=[], **kwargs):
Y
yelrose 已提交
536
        super(GraphWrapper, self).__init__()
Y
Yelrose 已提交
537
        # collect holders for PyReader
L
liweibin 已提交
538
        self._data_name_prefix = name
Y
Yelrose 已提交
539
        self._holder_list = []
Y
yelrose 已提交
540 541 542 543 544 545 546 547 548 549 550 551
        self.__create_graph_attr_holders()
        for node_feat_name, node_feat_shape, node_feat_dtype in node_feat:
            self.__create_graph_node_feat_holders(
                node_feat_name, node_feat_shape, node_feat_dtype)

        for edge_feat_name, edge_feat_shape, edge_feat_dtype in edge_feat:
            self.__create_graph_edge_feat_holders(
                edge_feat_name, edge_feat_shape, edge_feat_dtype)

    def __create_graph_attr_holders(self):
        """Create data holders for graph attributes.
        """
Y
Yelrose 已提交
552
        self._num_edges = L.data(
W
Webbley 已提交
553 554 555 556 557
            self._data_name_prefix + '/num_edges',
            shape=[1],
            append_batch_size=False,
            dtype="int64",
            stop_gradient=True)
Y
Yelrose 已提交
558
        self._num_graph = L.data(
W
Webbley 已提交
559 560 561 562 563
            self._data_name_prefix + '/num_graph',
            shape=[1],
            append_batch_size=False,
            dtype="int64",
            stop_gradient=True)
Y
Yelrose 已提交
564
        self._edges_src = L.data(
L
liweibin 已提交
565
            self._data_name_prefix + '/edges_src',
Y
yelrose 已提交
566 567
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
568
            dtype="int64",
Y
yelrose 已提交
569
            stop_gradient=True)
Y
Yelrose 已提交
570
        self._edges_dst = L.data(
L
liweibin 已提交
571
            self._data_name_prefix + '/edges_dst',
Y
yelrose 已提交
572 573
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
574
            dtype="int64",
Y
yelrose 已提交
575
            stop_gradient=True)
Y
Yelrose 已提交
576
        self._num_nodes = L.data(
L
liweibin 已提交
577
            self._data_name_prefix + '/num_nodes',
Y
yelrose 已提交
578 579
            shape=[1],
            append_batch_size=False,
Y
Yelrose 已提交
580
            dtype='int64',
Y
yelrose 已提交
581
            stop_gradient=True)
W
Webbley 已提交
582

Y
Yelrose 已提交
583
        self._edge_uniq_dst = L.data(
L
liweibin 已提交
584
            self._data_name_prefix + "/uniq_dst",
Y
yelrose 已提交
585 586
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
587
            dtype="int64",
Y
yelrose 已提交
588
            stop_gradient=True)
W
Webbley 已提交
589

Y
Yelrose 已提交
590
        self._graph_lod = L.data(
W
Webbley 已提交
591 592 593 594 595 596
            self._data_name_prefix + "/graph_lod",
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)

Y
Yelrose 已提交
597
        self._edge_uniq_dst_count = L.data(
L
liweibin 已提交
598
            self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
599 600 601 602
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)
W
Webbley 已提交
603

Y
Yelrose 已提交
604
        self._node_ids = L.data(
L
liweibin 已提交
605
            self._data_name_prefix + "/node_ids",
Y
yelrose 已提交
606 607
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
608
            dtype="int64",
Y
yelrose 已提交
609
            stop_gradient=True)
Y
Yelrose 已提交
610
        self._indegree = L.data(
L
liweibin 已提交
611
            self._data_name_prefix + "/indegree",
Y
yelrose 已提交
612 613
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
614
            dtype="int64",
Y
yelrose 已提交
615
            stop_gradient=True)
Y
Yelrose 已提交
616
        self._holder_list.extend([
W
Webbley 已提交
617 618 619 620 621 622 623 624 625
            self._edges_src,
            self._edges_dst,
            self._num_nodes,
            self._edge_uniq_dst,
            self._edge_uniq_dst_count,
            self._node_ids,
            self._indegree,
            self._graph_lod,
            self._num_graph,
W
Webbley 已提交
626
            self._num_edges,
Y
Yelrose 已提交
627
        ])
Y
yelrose 已提交
628 629 630 631 632

    def __create_graph_node_feat_holders(self, node_feat_name, node_feat_shape,
                                         node_feat_dtype):
        """Create data holders for node features.
        """
Y
Yelrose 已提交
633
        feat_holder = L.data(
L
liweibin 已提交
634
            self._data_name_prefix + '/node_feat/' + node_feat_name,
Y
yelrose 已提交
635 636 637 638
            shape=node_feat_shape,
            append_batch_size=False,
            dtype=node_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
639
        self.node_feat_tensor_dict[node_feat_name] = feat_holder
Y
Yelrose 已提交
640
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
641 642 643 644 645

    def __create_graph_edge_feat_holders(self, edge_feat_name, edge_feat_shape,
                                         edge_feat_dtype):
        """Create edge holders for edge features.
        """
Y
Yelrose 已提交
646
        feat_holder = L.data(
L
liweibin 已提交
647
            self._data_name_prefix + '/edge_feat/' + edge_feat_name,
Y
yelrose 已提交
648 649 650 651
            shape=edge_feat_shape,
            append_batch_size=False,
            dtype=edge_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
652
        self.edge_feat_tensor_dict[edge_feat_name] = feat_holder
Y
Yelrose 已提交
653
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    def to_feed(self, graph):
        """Convert the graph into feed_dict.

        This function helps to convert graph data into feed dict
        for :code:`fluid.Excecutor` to run the model.

        Args:
            graph: the :code:`Graph` data object

        Return:
            A dictionary contains data holder names and its corresponding
            data.
        """
        feed_dict = {}
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
W
Webbley 已提交
672
        num_edges = len(src)
Y
yelrose 已提交
673 674
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
675 676
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
W
Webbley 已提交
677 678 679 680 681 682 683 684 685 686 687
        num_graph = graph.num_graph
        graph_lod = graph.graph_lod

        if num_edges == 0:
            # Fake Graph
            src = np.array([0], dtype="int64")
            dst = np.array([0], dtype="int64")
            eid = np.array([0], dtype="int64")

            uniq_dst_count = np.array([0, 1], dtype="int32")
            uniq_dst = np.array([0], dtype="int64")
Y
yelrose 已提交
688 689 690 691 692 693 694

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

W
Webbley 已提交
695 696
        feed_dict[self._data_name_prefix + '/num_edges'] = np.array(
            [num_edges], dtype="int64")
L
liweibin 已提交
697 698 699
        feed_dict[self._data_name_prefix + '/edges_src'] = src
        feed_dict[self._data_name_prefix + '/edges_dst'] = dst
        feed_dict[self._data_name_prefix + '/num_nodes'] = np.array(
W
Webbley 已提交
700
            [graph.num_nodes], dtype="int64")
L
liweibin 已提交
701 702 703 704
        feed_dict[self._data_name_prefix + '/uniq_dst'] = uniq_dst
        feed_dict[self._data_name_prefix + '/uniq_dst_count'] = uniq_dst_count
        feed_dict[self._data_name_prefix + '/node_ids'] = graph.nodes
        feed_dict[self._data_name_prefix + '/indegree'] = indegree
W
Webbley 已提交
705 706 707 708
        feed_dict[self._data_name_prefix + '/graph_lod'] = graph_lod
        feed_dict[self._data_name_prefix + '/num_graph'] = np.array(
            [num_graph], dtype="int64")
        feed_dict[self._data_name_prefix + '/indegree'] = indegree
L
liweibin 已提交
709 710 711

        for key in self.node_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
712
                      key] = node_feat[key]
Y
yelrose 已提交
713

L
liweibin 已提交
714 715
        for key in self.edge_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
716
                      key] = edge_feat[key]
Y
yelrose 已提交
717 718

        return feed_dict
Y
Yelrose 已提交
719 720 721 722 723 724

    @property
    def holder_list(self):
        """Return the holder list.
        """
        return self._holder_list
Y
Yelrose 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738


def get_degree(edge, num_nodes):
    init_output = L.fill_constant(
        shape=[num_nodes], value=0, dtype="float32")
    init_output.stop_gradient = True
    final_output = L.scatter(init_output,
                       edge,
                       L.full_like(edge, 1, dtype="float32"),
                       overwrite=False)
    return final_output

class DropEdgeWrapper(BaseGraphWrapper):
    """Implement of Edge Drop """
Y
Yelrose 已提交
739
    def __init__(self, graph_wrapper, dropout, keep_self_loop=True):
Y
Yelrose 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753
        super(DropEdgeWrapper, self).__init__()

        # Copy Node's information
        for key, value in graph_wrapper.node_feat.items():
            self.node_feat_tensor_dict[key] = value

        self._num_nodes = graph_wrapper.num_nodes 
        self._graph_lod = graph_wrapper.graph_lod
        self._num_graph = graph_wrapper.num_graph
        self._node_ids = L.range(0, self._num_nodes, step=1, dtype="int32") 
     
        # Dropout Edges
        src, dst = graph_wrapper.edges
        u = L.uniform_random(shape=L.cast(L.shape(src), 'int64'), min=0., max=1.)
Y
Yelrose 已提交
754
        
Y
Yelrose 已提交
755 756 757 758 759 760

        # Avoid Empty Edges
        keeped = L.cast(u > dropout, dtype="float32")
        self._num_edges = L.reduce_sum(L.cast(keeped, "int32"))
        keeped = keeped + L.cast(self._num_edges == 0, dtype="float32")

Y
Yelrose 已提交
761 762 763 764
        if keep_self_loop:
            self_loop = L.cast(src == dst, dtype="float32")
            keeped = keeped + self_loop

Y
Yelrose 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        keeped = (keeped > 0.5)
        src = paddle_helper.masked_select(src, keeped)
        dst = paddle_helper.masked_select(dst, keeped)
        src.stop_gradient=True
        dst.stop_gradient=True
        self._edges_src = src 
        self._edges_dst = dst 

        for key, value in graph_wrapper.edge_feat.items():
            self.edge_feat_tensor_dict[key] = paddle_helper.masked_select(value, keeped)
        
        self._edge_uniq_dst, _, uniq_count = L.unique_with_counts(dst, dtype="int32")
        self._edge_uniq_dst.stop_gradient=True
        last = L.reduce_sum(uniq_count, keep_dim=True)
        uniq_count = L.cumsum(uniq_count, exclusive=True)
        self._edge_uniq_dst_count = L.concat([uniq_count, last])
        self._edge_uniq_dst_count.stop_gradient=True
        self._indegree = get_degree(self._edges_dst, self._num_nodes)