graph_wrapper.py 21.9 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package provides interface to help building static computational graph
for PaddlePaddle.
"""

import warnings
import numpy as np
import paddle.fluid as fluid

from pgl.utils import op
from pgl.utils import paddle_helper
from pgl.utils.logger import log

__all__ = ["BaseGraphWrapper", "GraphWrapper", "StaticGraphWrapper"]


def send(src, dst, nfeat, efeat, message_func):
    """Send message from src to dst.
    """
    src_feat = op.read_rows(nfeat, src)
    dst_feat = op.read_rows(nfeat, dst)
    msg = message_func(src_feat, dst_feat, efeat)
    return msg


def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, node_ids):
    """Recv message from given msg to dst nodes.
    """
    if reduce_function == "sum":
        if isinstance(msg, dict):
            raise TypeError("The message for build-in function"
                            " should be Tensor not dict.")

        try:
            out_dims = msg.shape[-1]
            init_output = fluid.layers.fill_constant_batch_size_like(
                node_ids, shape=[1, out_dims], value=0, dtype="float32")
            init_output.stop_gradient = False
            output = paddle_helper.scatter_add(init_output, dst, msg)
            return output
        except TypeError as e:
            warnings.warn(
                "scatter_add is not supported with paddle version <= 1.5")

            def sum_func(message):
                return fluid.layers.sequence_pool(message, "sum")

            reduce_function = sum_func

    # convert msg into lodtensor
    bucketed_msg = op.nested_lod_reset(msg, bucketing_index)
    # Check dim for bucketed_msg equal to out_dims
    output = reduce_function(bucketed_msg)
    out_dims = output.shape[-1]

    init_output = fluid.layers.fill_constant_batch_size_like(
        node_ids, shape=[1, out_dims], value=0, dtype="float32")
    init_output.stop_gradient = False
    output = fluid.layers.scatter(init_output, uniq_dst, output)
    return output


class BaseGraphWrapper(object):
    """This module implement base class for graph wrapper.

    Currently our PGL is developed based on static computational mode of
    paddle (we'll support dynamic computational model later). We need to build
    model upon a virtual data holder. BaseGraphWrapper provide a virtual
    graph structure that users can build deep learning models
    based on this virtual graph. And then feed real graph data to run
    the models. Moreover, we provide convenient message-passing interface
    (send & recv) for building graph neural networks.

    NOTICE: Don't use this BaseGraphWrapper directly. Use :code:`GraphWrapper`
    and :code:`StaticGraphWrapper` to create graph wrapper instead.
    """

    def __init__(self):
L
liweibin 已提交
92 93
        self.node_feat_tensor_dict = {}
        self.edge_feat_tensor_dict = {}
Y
yelrose 已提交
94 95 96 97 98 99 100
        self._edges_src = None
        self._edges_dst = None
        self._num_nodes = None
        self._indegree = None
        self._edge_uniq_dst = None
        self._edge_uniq_dst_count = None
        self._node_ids = None
L
liweibin 已提交
101 102 103 104
        self._data_name_prefix = ""

    def __repr__(self):
        return self._data_name_prefix
Y
yelrose 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    def send(self, message_func, nfeat_list=None, efeat_list=None):
        """Send message from all src nodes to dst nodes.

        The UDF message function should has the following format.

        .. code-block:: python

            def message_func(src_feat, dst_feat, edge_feat):
                '''
                    Args:
                        src_feat: the node feat dict attached to the src nodes.
                        dst_feat: the node feat dict attached to the dst nodes.
                        edge_feat: the edge feat dict attached to the
                                   corresponding (src, dst) edges.

                    Return:
                        It should return a tensor or a dictionary of tensor. And each tensor
                        should have a shape of (num_edges, dims).
                '''
                pass

        Args:
            message_func: UDF function.
            nfeat_list: a list of names or tuple (name, tensor)
            efeat_list: a list of names or tuple (name, tensor)

        Return:
            A dictionary of tensor representing the message. Each of the values
            in the dictionary has a shape (num_edges, dim) which should be collected
            by :code:`recv` function.
        """
        if efeat_list is None:
            efeat_list = {}
        if nfeat_list is None:
            nfeat_list = {}

        src, dst = self.edges
        nfeat = {}
        for feat in nfeat_list:
            if isinstance(feat, str):
                nfeat[feat] = self.node_feat[feat]
            else:
                name, tensor = feat
                nfeat[name] = tensor

        efeat = {}
        for feat in efeat_list:
            if isinstance(feat, str):
                efeat[feat] = self.edge_feat[feat]
            else:
                name, tensor = feat
                efeat[name] = tensor

        msg = send(src, dst, nfeat, efeat, message_func)
        return msg

    def recv(self, msg, reduce_function):
        """Recv message and aggregate the message by reduce_fucntion

        The UDF reduce_function function should has the following format.

        .. code-block:: python

            def reduce_func(msg):
                '''
                    Args:
                        msg: A LodTensor or a dictionary of LodTensor whose batch_size
                             is equals to the number of unique dst nodes.

                    Return:
                        It should return a tensor with shape (batch_size, out_dims). The
                        batch size should be the same as msg.
                '''
                pass

        Args:
            msg: A tensor or a dictionary of tensor created by send function..

            reduce_function: UDF reduce function or strings "sum" as built-in function.
                             The built-in "sum" will use scatter_add to optimized the speed.

        Return:
            A tensor with shape (num_nodes, out_dims). The output for nodes with no message
            will be zeros.
        """
        output = recv(
            dst=self._edges_dst,
            uniq_dst=self._edge_uniq_dst,
Y
Yelrose 已提交
194
            bucketing_index=self._edge_uniq_dst_count,
Y
yelrose 已提交
195 196 197 198 199 200 201 202 203 204 205
            msg=msg,
            reduce_function=reduce_function,
            node_ids=self._node_ids)
        return output

    @property
    def edges(self):
        """Return a tuple of edge Tensor (src, dst).

        Return:
            A tuple of Tensor (src, dst). Src and dst are both
Y
Yelrose 已提交
206
            tensor with shape (num_edges, ) and dtype int64.
Y
yelrose 已提交
207 208 209 210 211 212 213 214
        """
        return self._edges_src, self._edges_dst

    @property
    def num_nodes(self):
        """Return a variable of number of nodes

        Return:
Y
Yelrose 已提交
215
            A variable with shape (1,) as the number of nodes in int64.
Y
yelrose 已提交
216 217 218 219 220 221 222 223 224 225 226
        """
        return self._num_nodes

    @property
    def edge_feat(self):
        """Return a dictionary of tensor representing edge features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
227
        return self.edge_feat_tensor_dict
Y
yelrose 已提交
228 229 230 231 232 233 234 235 236

    @property
    def node_feat(self):
        """Return a dictionary of tensor representing node features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
237
        return self.node_feat_tensor_dict
Y
yelrose 已提交
238 239 240 241 242

    def indegree(self):
        """Return the indegree tensor for all nodes.

        Return:
Y
Yelrose 已提交
243
            A tensor of shape (num_nodes, ) in int64.
Y
yelrose 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        """
        return self._indegree


class StaticGraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that the data of the graph won't
    be changed and it can be fit into the GPU or CPU memory. This
    can reduce the time of swapping large data from GPU and CPU.

    Args:
        name: The graph data prefix

        graph: The static graph that should be put into memory

        place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
               device to hold the graph data.

    Examples:

        If we have a immutable graph and it can be fit into the GPU or CPU.
        we can just use a :code:`StaticGraphWrapper` to pre-place the graph
        data into devices.

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import StaticGraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = StaticGraphWrapper(name="graph",
                        graph=graph,
                        place=place)

            # build your deep graph model

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            # Initialize graph data
            graph_wrapper.initialize(place)
    """

    def __init__(self, name, graph, place):
        super(StaticGraphWrapper, self).__init__()
L
liweibin 已提交
305
        self._data_name_prefix = name
Y
yelrose 已提交
306 307 308 309 310 311 312 313 314 315 316 317
        self._initializers = []
        self.__create_graph_attr(graph)

    def __create_graph_attr(self, graph):
        """Create graph attributes for paddlepaddle.
        """
        src, dst = list(zip(*graph.edges))
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
318 319
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
Y
yelrose 已提交
320 321 322 323 324 325 326 327 328 329 330

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

        self.__create_graph_node_feat(node_feat, self._initializers)
        self.__create_graph_edge_feat(edge_feat, self._initializers)

        self._edges_src, init = paddle_helper.constant(
Y
Yelrose 已提交
331
            dtype="int64",
Y
yelrose 已提交
332
            value=src,
L
liweibin 已提交
333
            name=self._data_name_prefix + '/edges_src')
Y
yelrose 已提交
334 335 336
        self._initializers.append(init)

        self._edges_dst, init = paddle_helper.constant(
Y
Yelrose 已提交
337
            dtype="int64",
Y
yelrose 已提交
338
            value=dst,
L
liweibin 已提交
339
            name=self._data_name_prefix + '/edges_dst')
Y
yelrose 已提交
340 341 342
        self._initializers.append(init)

        self._num_nodes, init = paddle_helper.constant(
Y
Yelrose 已提交
343
            dtype="int64",
Y
yelrose 已提交
344 345
            hide_batch_size=False,
            value=np.array([graph.num_nodes]),
L
liweibin 已提交
346
            name=self._data_name_prefix + '/num_nodes')
Y
yelrose 已提交
347 348 349
        self._initializers.append(init)

        self._edge_uniq_dst, init = paddle_helper.constant(
L
liweibin 已提交
350
            name=self._data_name_prefix + "/uniq_dst",
Y
Yelrose 已提交
351
            dtype="int64",
Y
yelrose 已提交
352 353 354 355
            value=uniq_dst)
        self._initializers.append(init)

        self._edge_uniq_dst_count, init = paddle_helper.constant(
L
liweibin 已提交
356
            name=self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
357 358 359 360
            dtype="int32",
            value=uniq_dst_count)
        self._initializers.append(init)

Y
Yelrose 已提交
361
        node_ids_value = np.arange(0, graph.num_nodes, dtype="int64")
Y
yelrose 已提交
362
        self._node_ids, init = paddle_helper.constant(
L
liweibin 已提交
363
            name=self._data_name_prefix + "/node_ids",
Y
Yelrose 已提交
364
            dtype="int64",
Y
yelrose 已提交
365 366 367 368
            value=node_ids_value)
        self._initializers.append(init)

        self._indegree, init = paddle_helper.constant(
L
liweibin 已提交
369
            name=self._data_name_prefix + "/indegree",
Y
Yelrose 已提交
370
            dtype="int64",
Y
yelrose 已提交
371 372 373 374 375 376 377 378 379
            value=indegree)
        self._initializers.append(init)

    def __create_graph_node_feat(self, node_feat, collector):
        """Convert node features into paddlepaddle tensor.
        """
        for node_feat_name, node_feat_value in node_feat.items():
            node_feat_shape = node_feat_value.shape
            node_feat_dtype = node_feat_value.dtype
L
liweibin 已提交
380
            self.node_feat_tensor_dict[
Y
yelrose 已提交
381
                node_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
382
                    name=self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
383
                    node_feat_name,
Y
yelrose 已提交
384 385 386 387 388 389 390 391 392 393
                    dtype=node_feat_dtype,
                    value=node_feat_value)
            collector.append(init)

    def __create_graph_edge_feat(self, edge_feat, collector):
        """Convert edge features into paddlepaddle tensor.
        """
        for edge_feat_name, edge_feat_value in edge_feat.items():
            edge_feat_shape = edge_feat_value.shape
            edge_feat_dtype = edge_feat_value.dtype
L
liweibin 已提交
394
            self.edge_feat_tensor_dict[
Y
yelrose 已提交
395
                edge_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
396
                    name=self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
397
                    edge_feat_name,
Y
yelrose 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                    dtype=edge_feat_dtype,
                    value=edge_feat_value)
            collector.append(init)

    def initialize(self, place):
        """Placing the graph data into the devices.

        Args:
            place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
                   device to hold the graph data.
        """
        log.info(
            "StaticGraphWrapper.initialize must be called after startup program"
        )
        for init_func in self._initializers:
            init_func(place)


class GraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that creates a graph data holders
    that attributes and features in the graph are :code:`fluid.layers.data`.
    And we provide interface :code:`to_feed` to help converting :code:`Graph`
    data into :code:`feed_dict`.

    Args:
        name: The graph data prefix

        place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
               device to hold the graph data.

        node_feat: A list of tuples that decribe the details of node
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.node_feat_info()`
                   to get the node_feat settings.

        edge_feat: A list of tuples that decribe the details of edge
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.edge_feat_info()`
                   to get the edge_feat settings.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import GraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = GraphWrapper(name="graph",
                        place=place,
                        node_feat=graph.node_feat_info(),
                        edge_feat=graph.edge_feat_info())

            # build your deep graph model
            ...

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            for i in range(10):
                feed_dict = graph_wrapper.to_feed(graph)
                ret = exe.run(fetch_list=[...], feed=feed_dict )
    """

    def __init__(self, name, place, node_feat=[], edge_feat=[]):
        super(GraphWrapper, self).__init__()
Y
Yelrose 已提交
483
        # collect holders for PyReader
L
liweibin 已提交
484
        self._data_name_prefix = name
Y
Yelrose 已提交
485
        self._holder_list = []
Y
yelrose 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499
        self._place = place
        self.__create_graph_attr_holders()
        for node_feat_name, node_feat_shape, node_feat_dtype in node_feat:
            self.__create_graph_node_feat_holders(
                node_feat_name, node_feat_shape, node_feat_dtype)

        for edge_feat_name, edge_feat_shape, edge_feat_dtype in edge_feat:
            self.__create_graph_edge_feat_holders(
                edge_feat_name, edge_feat_shape, edge_feat_dtype)

    def __create_graph_attr_holders(self):
        """Create data holders for graph attributes.
        """
        self._edges_src = fluid.layers.data(
L
liweibin 已提交
500
            self._data_name_prefix + '/edges_src',
Y
yelrose 已提交
501 502
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
503
            dtype="int64",
Y
yelrose 已提交
504 505
            stop_gradient=True)
        self._edges_dst = fluid.layers.data(
L
liweibin 已提交
506
            self._data_name_prefix + '/edges_dst',
Y
yelrose 已提交
507 508
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
509
            dtype="int64",
Y
yelrose 已提交
510 511
            stop_gradient=True)
        self._num_nodes = fluid.layers.data(
L
liweibin 已提交
512
            self._data_name_prefix + '/num_nodes',
Y
yelrose 已提交
513 514
            shape=[1],
            append_batch_size=False,
Y
Yelrose 已提交
515
            dtype='int64',
Y
yelrose 已提交
516 517
            stop_gradient=True)
        self._edge_uniq_dst = fluid.layers.data(
L
liweibin 已提交
518
            self._data_name_prefix + "/uniq_dst",
Y
yelrose 已提交
519 520
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
521
            dtype="int64",
Y
yelrose 已提交
522 523
            stop_gradient=True)
        self._edge_uniq_dst_count = fluid.layers.data(
L
liweibin 已提交
524
            self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
525 526 527 528 529
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)
        self._node_ids = fluid.layers.data(
L
liweibin 已提交
530
            self._data_name_prefix + "/node_ids",
Y
yelrose 已提交
531 532
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
533
            dtype="int64",
Y
yelrose 已提交
534 535
            stop_gradient=True)
        self._indegree = fluid.layers.data(
L
liweibin 已提交
536
            self._data_name_prefix + "/indegree",
Y
yelrose 已提交
537 538
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
539
            dtype="int64",
Y
yelrose 已提交
540
            stop_gradient=True)
Y
Yelrose 已提交
541 542 543 544 545
        self._holder_list.extend([
            self._edges_src, self._edges_dst, self._num_nodes,
            self._edge_uniq_dst, self._edge_uniq_dst_count, self._node_ids,
            self._indegree
        ])
Y
yelrose 已提交
546 547 548 549 550 551

    def __create_graph_node_feat_holders(self, node_feat_name, node_feat_shape,
                                         node_feat_dtype):
        """Create data holders for node features.
        """
        feat_holder = fluid.layers.data(
L
liweibin 已提交
552
            self._data_name_prefix + '/node_feat/' + node_feat_name,
Y
yelrose 已提交
553 554 555 556
            shape=node_feat_shape,
            append_batch_size=False,
            dtype=node_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
557
        self.node_feat_tensor_dict[node_feat_name] = feat_holder
Y
Yelrose 已提交
558
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
559 560 561 562 563 564

    def __create_graph_edge_feat_holders(self, edge_feat_name, edge_feat_shape,
                                         edge_feat_dtype):
        """Create edge holders for edge features.
        """
        feat_holder = fluid.layers.data(
L
liweibin 已提交
565
            self._data_name_prefix + '/edge_feat/' + edge_feat_name,
Y
yelrose 已提交
566 567 568 569
            shape=edge_feat_shape,
            append_batch_size=False,
            dtype=edge_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
570
        self.edge_feat_tensor_dict[edge_feat_name] = feat_holder
Y
Yelrose 已提交
571
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

    def to_feed(self, graph):
        """Convert the graph into feed_dict.

        This function helps to convert graph data into feed dict
        for :code:`fluid.Excecutor` to run the model.

        Args:
            graph: the :code:`Graph` data object

        Return:
            A dictionary contains data holder names and its corresponding
            data.
        """
        feed_dict = {}
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
592 593
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
Y
yelrose 已提交
594 595 596 597 598 599 600

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

L
liweibin 已提交
601 602 603 604 605 606 607 608 609 610 611
        feed_dict[self._data_name_prefix + '/edges_src'] = src
        feed_dict[self._data_name_prefix + '/edges_dst'] = dst
        feed_dict[self._data_name_prefix + '/num_nodes'] = np.array(
            graph.num_nodes)
        feed_dict[self._data_name_prefix + '/uniq_dst'] = uniq_dst
        feed_dict[self._data_name_prefix + '/uniq_dst_count'] = uniq_dst_count
        feed_dict[self._data_name_prefix + '/node_ids'] = graph.nodes
        feed_dict[self._data_name_prefix + '/indegree'] = indegree

        for key in self.node_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
612
                      key] = node_feat[key]
Y
yelrose 已提交
613

L
liweibin 已提交
614 615
        for key in self.edge_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
616
                      key] = edge_feat[key]
Y
yelrose 已提交
617 618

        return feed_dict
Y
Yelrose 已提交
619 620 621 622 623 624

    @property
    def holder_list(self):
        """Return the holder list.
        """
        return self._holder_list