graph_wrapper.py 26.9 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package provides interface to help building static computational graph
for PaddlePaddle.
"""

import warnings
import numpy as np
import paddle.fluid as fluid
Y
Yelrose 已提交
22
import paddle.fluid.layers as L
Y
yelrose 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

from pgl.utils import op
from pgl.utils import paddle_helper
from pgl.utils.logger import log

__all__ = ["BaseGraphWrapper", "GraphWrapper", "StaticGraphWrapper"]


def send(src, dst, nfeat, efeat, message_func):
    """Send message from src to dst.
    """
    src_feat = op.read_rows(nfeat, src)
    dst_feat = op.read_rows(nfeat, dst)
    msg = message_func(src_feat, dst_feat, efeat)
    return msg


W
Webbley 已提交
40 41
def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, num_nodes,
         num_edges):
Y
yelrose 已提交
42 43 44 45 46 47 48 49
    """Recv message from given msg to dst nodes.
    """
    if reduce_function == "sum":
        if isinstance(msg, dict):
            raise TypeError("The message for build-in function"
                            " should be Tensor not dict.")

        try:
W
Webbley 已提交
50
            out_dim = msg.shape[-1]
Y
Yelrose 已提交
51
            init_output = L.fill_constant(
52
                shape=[num_nodes, out_dim], value=0, dtype=msg.dtype)
Y
yelrose 已提交
53
            init_output.stop_gradient = False
Y
Yelrose 已提交
54
            empty_msg_flag = L.cast(num_edges > 0, dtype=msg.dtype)
W
Webbley 已提交
55
            msg = msg * empty_msg_flag
Y
yelrose 已提交
56 57 58 59 60 61 62
            output = paddle_helper.scatter_add(init_output, dst, msg)
            return output
        except TypeError as e:
            warnings.warn(
                "scatter_add is not supported with paddle version <= 1.5")

            def sum_func(message):
Y
Yelrose 已提交
63
                return L.sequence_pool(message, "sum")
Y
yelrose 已提交
64 65 66 67 68

            reduce_function = sum_func

    bucketed_msg = op.nested_lod_reset(msg, bucketing_index)
    output = reduce_function(bucketed_msg)
W
Webbley 已提交
69
    output_dim = output.shape[-1]
70

Y
Yelrose 已提交
71
    empty_msg_flag = L.cast(num_edges > 0, dtype=output.dtype)
W
Webbley 已提交
72
    output = output * empty_msg_flag
Y
yelrose 已提交
73

Y
Yelrose 已提交
74
    init_output = L.fill_constant(
75
        shape=[num_nodes, output_dim], value=0, dtype=output.dtype)
W
Webbley 已提交
76
    init_output.stop_gradient = True
Y
Yelrose 已提交
77
    final_output = L.scatter(init_output, uniq_dst, output)
W
Webbley 已提交
78
    return final_output
Y
yelrose 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96


class BaseGraphWrapper(object):
    """This module implement base class for graph wrapper.

    Currently our PGL is developed based on static computational mode of
    paddle (we'll support dynamic computational model later). We need to build
    model upon a virtual data holder. BaseGraphWrapper provide a virtual
    graph structure that users can build deep learning models
    based on this virtual graph. And then feed real graph data to run
    the models. Moreover, we provide convenient message-passing interface
    (send & recv) for building graph neural networks.

    NOTICE: Don't use this BaseGraphWrapper directly. Use :code:`GraphWrapper`
    and :code:`StaticGraphWrapper` to create graph wrapper instead.
    """

    def __init__(self):
L
liweibin 已提交
97 98
        self.node_feat_tensor_dict = {}
        self.edge_feat_tensor_dict = {}
Y
yelrose 已提交
99 100 101 102 103 104 105
        self._edges_src = None
        self._edges_dst = None
        self._num_nodes = None
        self._indegree = None
        self._edge_uniq_dst = None
        self._edge_uniq_dst_count = None
        self._node_ids = None
W
Webbley 已提交
106 107
        self._graph_lod = None
        self._num_graph = None
Y
Yelrose 已提交
108
        self._num_edges = None
L
liweibin 已提交
109 110 111 112
        self._data_name_prefix = ""

    def __repr__(self):
        return self._data_name_prefix
Y
yelrose 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    def send(self, message_func, nfeat_list=None, efeat_list=None):
        """Send message from all src nodes to dst nodes.

        The UDF message function should has the following format.

        .. code-block:: python

            def message_func(src_feat, dst_feat, edge_feat):
                '''
                    Args:
                        src_feat: the node feat dict attached to the src nodes.
                        dst_feat: the node feat dict attached to the dst nodes.
                        edge_feat: the edge feat dict attached to the
                                   corresponding (src, dst) edges.

                    Return:
                        It should return a tensor or a dictionary of tensor. And each tensor
                        should have a shape of (num_edges, dims).
                '''
                pass

        Args:
            message_func: UDF function.
            nfeat_list: a list of names or tuple (name, tensor)
            efeat_list: a list of names or tuple (name, tensor)

        Return:
            A dictionary of tensor representing the message. Each of the values
            in the dictionary has a shape (num_edges, dim) which should be collected
            by :code:`recv` function.
        """
        if efeat_list is None:
            efeat_list = {}
        if nfeat_list is None:
            nfeat_list = {}

        src, dst = self.edges
        nfeat = {}
        for feat in nfeat_list:
            if isinstance(feat, str):
                nfeat[feat] = self.node_feat[feat]
            else:
                name, tensor = feat
                nfeat[name] = tensor

        efeat = {}
        for feat in efeat_list:
            if isinstance(feat, str):
                efeat[feat] = self.edge_feat[feat]
            else:
                name, tensor = feat
                efeat[name] = tensor

        msg = send(src, dst, nfeat, efeat, message_func)
        return msg

    def recv(self, msg, reduce_function):
        """Recv message and aggregate the message by reduce_fucntion

        The UDF reduce_function function should has the following format.

        .. code-block:: python

            def reduce_func(msg):
                '''
                    Args:
                        msg: A LodTensor or a dictionary of LodTensor whose batch_size
                             is equals to the number of unique dst nodes.

                    Return:
                        It should return a tensor with shape (batch_size, out_dims). The
                        batch size should be the same as msg.
                '''
                pass

        Args:
            msg: A tensor or a dictionary of tensor created by send function..

            reduce_function: UDF reduce function or strings "sum" as built-in function.
                             The built-in "sum" will use scatter_add to optimized the speed.

        Return:
            A tensor with shape (num_nodes, out_dims). The output for nodes with no message
            will be zeros.
        """
        output = recv(
            dst=self._edges_dst,
            uniq_dst=self._edge_uniq_dst,
Y
Yelrose 已提交
202
            bucketing_index=self._edge_uniq_dst_count,
Y
yelrose 已提交
203 204
            msg=msg,
            reduce_function=reduce_function,
W
Webbley 已提交
205 206
            num_edges=self._num_edges,
            num_nodes=self._num_nodes)
Y
yelrose 已提交
207 208 209 210 211 212 213 214
        return output

    @property
    def edges(self):
        """Return a tuple of edge Tensor (src, dst).

        Return:
            A tuple of Tensor (src, dst). Src and dst are both
Y
Yelrose 已提交
215
            tensor with shape (num_edges, ) and dtype int64.
Y
yelrose 已提交
216 217 218 219 220 221 222 223
        """
        return self._edges_src, self._edges_dst

    @property
    def num_nodes(self):
        """Return a variable of number of nodes

        Return:
Y
Yelrose 已提交
224
            A variable with shape (1,) as the number of nodes in int64.
Y
yelrose 已提交
225 226 227
        """
        return self._num_nodes

W
Webbley 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    @property
    def graph_lod(self):
        """Return graph index for graphs

        Return:
            A variable with shape [None ]  as the Lod information of multiple-graph.
        """
        return self._graph_lod

    @property
    def num_graph(self):
        """Return a variable of number of graphs

        Return:
            A variable with shape (1,) as the number of Graphs in int64.
        """
        return self._num_graph

Y
yelrose 已提交
246 247 248 249 250 251 252 253
    @property
    def edge_feat(self):
        """Return a dictionary of tensor representing edge features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
254
        return self.edge_feat_tensor_dict
Y
yelrose 已提交
255 256 257 258 259 260 261 262 263

    @property
    def node_feat(self):
        """Return a dictionary of tensor representing node features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
L
liweibin 已提交
264
        return self.node_feat_tensor_dict
Y
yelrose 已提交
265 266 267 268 269

    def indegree(self):
        """Return the indegree tensor for all nodes.

        Return:
Y
Yelrose 已提交
270
            A tensor of shape (num_nodes, ) in int64.
Y
yelrose 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284
        """
        return self._indegree


class StaticGraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that the data of the graph won't
    be changed and it can be fit into the GPU or CPU memory. This
    can reduce the time of swapping large data from GPU and CPU.

    Args:
        name: The graph data prefix

        graph: The static graph that should be put into memory

W
Webbley 已提交
285
        place: fluid.CPUPlace or fluid.CUDAPlace(n) indicating the
Y
yelrose 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
               device to hold the graph data.

    Examples:

        If we have a immutable graph and it can be fit into the GPU or CPU.
        we can just use a :code:`StaticGraphWrapper` to pre-place the graph
        data into devices.

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import StaticGraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = StaticGraphWrapper(name="graph",
                        graph=graph,
                        place=place)

            # build your deep graph model

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            # Initialize graph data
            graph_wrapper.initialize(place)
    """

    def __init__(self, name, graph, place):
        super(StaticGraphWrapper, self).__init__()
L
liweibin 已提交
332
        self._data_name_prefix = name
Y
yelrose 已提交
333 334 335 336 337 338 339 340 341 342 343
        self._initializers = []
        self.__create_graph_attr(graph)

    def __create_graph_attr(self, graph):
        """Create graph attributes for paddlepaddle.
        """
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
344 345
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
W
Webbley 已提交
346 347 348 349 350 351 352 353 354 355 356
        graph_lod = graph.graph_lod
        num_graph = graph.num_graph

        num_edges = len(src)
        if num_edges == 0:
            # Fake Graph
            src = np.array([0], dtype="int64")
            dst = np.array([0], dtype="int64")
            eid = np.array([0], dtype="int64")
            uniq_dst_count = np.array([0, 1], dtype="int32")
            uniq_dst = np.array([0], dtype="int64")
Y
yelrose 已提交
357 358 359 360 361 362 363 364 365 366

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

        self.__create_graph_node_feat(node_feat, self._initializers)
        self.__create_graph_edge_feat(edge_feat, self._initializers)

W
Webbley 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380
        self._num_edges, init = paddle_helper.constant(
            dtype="int64",
            value=np.array(
                [num_edges], dtype="int64"),
            name=self._data_name_prefix + '/num_edges')
        self._initializers.append(init)

        self._num_graph, init = paddle_helper.constant(
            dtype="int64",
            value=np.array(
                [num_graph], dtype="int64"),
            name=self._data_name_prefix + '/num_graph')
        self._initializers.append(init)

Y
yelrose 已提交
381
        self._edges_src, init = paddle_helper.constant(
Y
Yelrose 已提交
382
            dtype="int64",
Y
yelrose 已提交
383
            value=src,
L
liweibin 已提交
384
            name=self._data_name_prefix + '/edges_src')
Y
yelrose 已提交
385 386 387
        self._initializers.append(init)

        self._edges_dst, init = paddle_helper.constant(
Y
Yelrose 已提交
388
            dtype="int64",
Y
yelrose 已提交
389
            value=dst,
L
liweibin 已提交
390
            name=self._data_name_prefix + '/edges_dst')
Y
yelrose 已提交
391 392 393
        self._initializers.append(init)

        self._num_nodes, init = paddle_helper.constant(
Y
Yelrose 已提交
394
            dtype="int64",
Y
yelrose 已提交
395 396
            hide_batch_size=False,
            value=np.array([graph.num_nodes]),
L
liweibin 已提交
397
            name=self._data_name_prefix + '/num_nodes')
Y
yelrose 已提交
398 399 400
        self._initializers.append(init)

        self._edge_uniq_dst, init = paddle_helper.constant(
L
liweibin 已提交
401
            name=self._data_name_prefix + "/uniq_dst",
Y
Yelrose 已提交
402
            dtype="int64",
Y
yelrose 已提交
403 404 405 406
            value=uniq_dst)
        self._initializers.append(init)

        self._edge_uniq_dst_count, init = paddle_helper.constant(
L
liweibin 已提交
407
            name=self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
408 409 410 411
            dtype="int32",
            value=uniq_dst_count)
        self._initializers.append(init)

W
Webbley 已提交
412 413 414 415 416 417
        self._graph_lod, init = paddle_helper.constant(
            name=self._data_name_prefix + "/graph_lod",
            dtype="int32",
            value=graph_lod)
        self._initializers.append(init)

Y
Yelrose 已提交
418
        node_ids_value = np.arange(0, graph.num_nodes, dtype="int64")
Y
yelrose 已提交
419
        self._node_ids, init = paddle_helper.constant(
L
liweibin 已提交
420
            name=self._data_name_prefix + "/node_ids",
Y
Yelrose 已提交
421
            dtype="int64",
Y
yelrose 已提交
422 423 424 425
            value=node_ids_value)
        self._initializers.append(init)

        self._indegree, init = paddle_helper.constant(
L
liweibin 已提交
426
            name=self._data_name_prefix + "/indegree",
Y
Yelrose 已提交
427
            dtype="int64",
Y
yelrose 已提交
428 429 430 431 432 433 434 435 436
            value=indegree)
        self._initializers.append(init)

    def __create_graph_node_feat(self, node_feat, collector):
        """Convert node features into paddlepaddle tensor.
        """
        for node_feat_name, node_feat_value in node_feat.items():
            node_feat_shape = node_feat_value.shape
            node_feat_dtype = node_feat_value.dtype
L
liweibin 已提交
437
            self.node_feat_tensor_dict[
Y
yelrose 已提交
438
                node_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
439
                    name=self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
440
                    node_feat_name,
Y
yelrose 已提交
441 442 443 444 445 446 447 448 449 450
                    dtype=node_feat_dtype,
                    value=node_feat_value)
            collector.append(init)

    def __create_graph_edge_feat(self, edge_feat, collector):
        """Convert edge features into paddlepaddle tensor.
        """
        for edge_feat_name, edge_feat_value in edge_feat.items():
            edge_feat_shape = edge_feat_value.shape
            edge_feat_dtype = edge_feat_value.dtype
L
liweibin 已提交
451
            self.edge_feat_tensor_dict[
Y
yelrose 已提交
452
                edge_feat_name], init = paddle_helper.constant(
L
liweibin 已提交
453
                    name=self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
454
                    edge_feat_name,
Y
yelrose 已提交
455 456 457 458 459 460 461 462
                    dtype=edge_feat_dtype,
                    value=edge_feat_value)
            collector.append(init)

    def initialize(self, place):
        """Placing the graph data into the devices.

        Args:
W
Webbley 已提交
463
            place: fluid.CPUPlace or fluid.CUDAPlace(n) indicating the
Y
yelrose 已提交
464 465 466 467 468 469 470 471 472 473 474
                   device to hold the graph data.
        """
        log.info(
            "StaticGraphWrapper.initialize must be called after startup program"
        )
        for init_func in self._initializers:
            init_func(place)


class GraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that creates a graph data holders
Y
Yelrose 已提交
475
    that attributes and features in the graph are :code:`L.data`.
Y
yelrose 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    And we provide interface :code:`to_feed` to help converting :code:`Graph`
    data into :code:`feed_dict`.

    Args:
        name: The graph data prefix

        node_feat: A list of tuples that decribe the details of node
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.node_feat_info()`
                   to get the node_feat settings.

        edge_feat: A list of tuples that decribe the details of edge
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.edge_feat_info()`
                   to get the edge_feat settings.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import GraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = GraphWrapper(name="graph",
                        node_feat=graph.node_feat_info(),
                        edge_feat=graph.edge_feat_info())

            # build your deep graph model
            ...

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            for i in range(10):
                feed_dict = graph_wrapper.to_feed(graph)
                ret = exe.run(fetch_list=[...], feed=feed_dict )
    """

Y
yelrose 已提交
534
    def __init__(self, name, node_feat=[], edge_feat=[], **kwargs):
Y
yelrose 已提交
535
        super(GraphWrapper, self).__init__()
Y
Yelrose 已提交
536
        # collect holders for PyReader
L
liweibin 已提交
537
        self._data_name_prefix = name
Y
Yelrose 已提交
538
        self._holder_list = []
Y
yelrose 已提交
539 540 541 542 543 544 545 546 547 548 549 550
        self.__create_graph_attr_holders()
        for node_feat_name, node_feat_shape, node_feat_dtype in node_feat:
            self.__create_graph_node_feat_holders(
                node_feat_name, node_feat_shape, node_feat_dtype)

        for edge_feat_name, edge_feat_shape, edge_feat_dtype in edge_feat:
            self.__create_graph_edge_feat_holders(
                edge_feat_name, edge_feat_shape, edge_feat_dtype)

    def __create_graph_attr_holders(self):
        """Create data holders for graph attributes.
        """
Y
Yelrose 已提交
551
        self._num_edges = L.data(
W
Webbley 已提交
552 553 554 555 556
            self._data_name_prefix + '/num_edges',
            shape=[1],
            append_batch_size=False,
            dtype="int64",
            stop_gradient=True)
Y
Yelrose 已提交
557
        self._num_graph = L.data(
W
Webbley 已提交
558 559 560 561 562
            self._data_name_prefix + '/num_graph',
            shape=[1],
            append_batch_size=False,
            dtype="int64",
            stop_gradient=True)
Y
Yelrose 已提交
563
        self._edges_src = L.data(
L
liweibin 已提交
564
            self._data_name_prefix + '/edges_src',
Y
yelrose 已提交
565 566
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
567
            dtype="int64",
Y
yelrose 已提交
568
            stop_gradient=True)
Y
Yelrose 已提交
569
        self._edges_dst = L.data(
L
liweibin 已提交
570
            self._data_name_prefix + '/edges_dst',
Y
yelrose 已提交
571 572
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
573
            dtype="int64",
Y
yelrose 已提交
574
            stop_gradient=True)
Y
Yelrose 已提交
575
        self._num_nodes = L.data(
L
liweibin 已提交
576
            self._data_name_prefix + '/num_nodes',
Y
yelrose 已提交
577 578
            shape=[1],
            append_batch_size=False,
Y
Yelrose 已提交
579
            dtype='int64',
Y
yelrose 已提交
580
            stop_gradient=True)
W
Webbley 已提交
581

Y
Yelrose 已提交
582
        self._edge_uniq_dst = L.data(
L
liweibin 已提交
583
            self._data_name_prefix + "/uniq_dst",
Y
yelrose 已提交
584 585
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
586
            dtype="int64",
Y
yelrose 已提交
587
            stop_gradient=True)
W
Webbley 已提交
588

Y
Yelrose 已提交
589
        self._graph_lod = L.data(
W
Webbley 已提交
590 591 592 593 594 595
            self._data_name_prefix + "/graph_lod",
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)

Y
Yelrose 已提交
596
        self._edge_uniq_dst_count = L.data(
L
liweibin 已提交
597
            self._data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
598 599 600 601
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)
W
Webbley 已提交
602

Y
Yelrose 已提交
603
        self._node_ids = L.data(
L
liweibin 已提交
604
            self._data_name_prefix + "/node_ids",
Y
yelrose 已提交
605 606
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
607
            dtype="int64",
Y
yelrose 已提交
608
            stop_gradient=True)
Y
Yelrose 已提交
609
        self._indegree = L.data(
L
liweibin 已提交
610
            self._data_name_prefix + "/indegree",
Y
yelrose 已提交
611 612
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
613
            dtype="int64",
Y
yelrose 已提交
614
            stop_gradient=True)
Y
Yelrose 已提交
615
        self._holder_list.extend([
W
Webbley 已提交
616 617 618 619 620 621 622 623 624
            self._edges_src,
            self._edges_dst,
            self._num_nodes,
            self._edge_uniq_dst,
            self._edge_uniq_dst_count,
            self._node_ids,
            self._indegree,
            self._graph_lod,
            self._num_graph,
W
Webbley 已提交
625
            self._num_edges,
Y
Yelrose 已提交
626
        ])
Y
yelrose 已提交
627 628 629 630 631

    def __create_graph_node_feat_holders(self, node_feat_name, node_feat_shape,
                                         node_feat_dtype):
        """Create data holders for node features.
        """
Y
Yelrose 已提交
632
        feat_holder = L.data(
L
liweibin 已提交
633
            self._data_name_prefix + '/node_feat/' + node_feat_name,
Y
yelrose 已提交
634 635 636 637
            shape=node_feat_shape,
            append_batch_size=False,
            dtype=node_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
638
        self.node_feat_tensor_dict[node_feat_name] = feat_holder
Y
Yelrose 已提交
639
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
640 641 642 643 644

    def __create_graph_edge_feat_holders(self, edge_feat_name, edge_feat_shape,
                                         edge_feat_dtype):
        """Create edge holders for edge features.
        """
Y
Yelrose 已提交
645
        feat_holder = L.data(
L
liweibin 已提交
646
            self._data_name_prefix + '/edge_feat/' + edge_feat_name,
Y
yelrose 已提交
647 648 649 650
            shape=edge_feat_shape,
            append_batch_size=False,
            dtype=edge_feat_dtype,
            stop_gradient=True)
L
liweibin 已提交
651
        self.edge_feat_tensor_dict[edge_feat_name] = feat_holder
Y
Yelrose 已提交
652
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

    def to_feed(self, graph):
        """Convert the graph into feed_dict.

        This function helps to convert graph data into feed dict
        for :code:`fluid.Excecutor` to run the model.

        Args:
            graph: the :code:`Graph` data object

        Return:
            A dictionary contains data holder names and its corresponding
            data.
        """
        feed_dict = {}
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
W
Webbley 已提交
671
        num_edges = len(src)
Y
yelrose 已提交
672 673
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
674 675
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
W
Webbley 已提交
676 677 678 679 680 681 682 683 684 685 686
        num_graph = graph.num_graph
        graph_lod = graph.graph_lod

        if num_edges == 0:
            # Fake Graph
            src = np.array([0], dtype="int64")
            dst = np.array([0], dtype="int64")
            eid = np.array([0], dtype="int64")

            uniq_dst_count = np.array([0, 1], dtype="int32")
            uniq_dst = np.array([0], dtype="int64")
Y
yelrose 已提交
687 688 689 690 691 692 693

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

W
Webbley 已提交
694 695
        feed_dict[self._data_name_prefix + '/num_edges'] = np.array(
            [num_edges], dtype="int64")
L
liweibin 已提交
696 697 698
        feed_dict[self._data_name_prefix + '/edges_src'] = src
        feed_dict[self._data_name_prefix + '/edges_dst'] = dst
        feed_dict[self._data_name_prefix + '/num_nodes'] = np.array(
W
Webbley 已提交
699
            [graph.num_nodes], dtype="int64")
L
liweibin 已提交
700 701 702 703
        feed_dict[self._data_name_prefix + '/uniq_dst'] = uniq_dst
        feed_dict[self._data_name_prefix + '/uniq_dst_count'] = uniq_dst_count
        feed_dict[self._data_name_prefix + '/node_ids'] = graph.nodes
        feed_dict[self._data_name_prefix + '/indegree'] = indegree
W
Webbley 已提交
704 705 706 707
        feed_dict[self._data_name_prefix + '/graph_lod'] = graph_lod
        feed_dict[self._data_name_prefix + '/num_graph'] = np.array(
            [num_graph], dtype="int64")
        feed_dict[self._data_name_prefix + '/indegree'] = indegree
L
liweibin 已提交
708 709 710

        for key in self.node_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/node_feat/' +
Y
Yelrose 已提交
711
                      key] = node_feat[key]
Y
yelrose 已提交
712

L
liweibin 已提交
713 714
        for key in self.edge_feat_tensor_dict:
            feed_dict[self._data_name_prefix + '/edge_feat/' +
Y
Yelrose 已提交
715
                      key] = edge_feat[key]
Y
yelrose 已提交
716 717

        return feed_dict
Y
Yelrose 已提交
718 719 720 721 722 723

    @property
    def holder_list(self):
        """Return the holder list.
        """
        return self._holder_list
Y
Yelrose 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776


def get_degree(edge, num_nodes):
    init_output = L.fill_constant(
        shape=[num_nodes], value=0, dtype="float32")
    init_output.stop_gradient = True
    final_output = L.scatter(init_output,
                       edge,
                       L.full_like(edge, 1, dtype="float32"),
                       overwrite=False)
    return final_output

class DropEdgeWrapper(BaseGraphWrapper):
    """Implement of Edge Drop """
    def __init__(self, graph_wrapper, dropout):
        super(DropEdgeWrapper, self).__init__()

        # Copy Node's information
        for key, value in graph_wrapper.node_feat.items():
            self.node_feat_tensor_dict[key] = value

        self._num_nodes = graph_wrapper.num_nodes 
        self._graph_lod = graph_wrapper.graph_lod
        self._num_graph = graph_wrapper.num_graph
        self._node_ids = L.range(0, self._num_nodes, step=1, dtype="int32") 
     
        # Dropout Edges
        src, dst = graph_wrapper.edges
        u = L.uniform_random(shape=L.cast(L.shape(src), 'int64'), min=0., max=1.)

        # Avoid Empty Edges
        keeped = L.cast(u > dropout, dtype="float32")
        self._num_edges = L.reduce_sum(L.cast(keeped, "int32"))
        keeped = keeped + L.cast(self._num_edges == 0, dtype="float32")

        keeped = (keeped > 0.5)
        src = paddle_helper.masked_select(src, keeped)
        dst = paddle_helper.masked_select(dst, keeped)
        src.stop_gradient=True
        dst.stop_gradient=True
        self._edges_src = src 
        self._edges_dst = dst 

        for key, value in graph_wrapper.edge_feat.items():
            self.edge_feat_tensor_dict[key] = paddle_helper.masked_select(value, keeped)
        
        self._edge_uniq_dst, _, uniq_count = L.unique_with_counts(dst, dtype="int32")
        self._edge_uniq_dst.stop_gradient=True
        last = L.reduce_sum(uniq_count, keep_dim=True)
        uniq_count = L.cumsum(uniq_count, exclusive=True)
        self._edge_uniq_dst_count = L.concat([uniq_count, last])
        self._edge_uniq_dst_count.stop_gradient=True
        self._indegree = get_degree(self._edges_dst, self._num_nodes)