DecayedAdagradOptimizer_cn.rst 6.7 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5
.. _cn_api_fluid_optimizer_DecayedAdagradOptimizer:

DecayedAdagradOptimizer
-------------------------------

6
.. py:class:: paddle.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, parameter_list=None, regularization=None, name=None)
H
Hao Wang 已提交
7

8
Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 算法,用于解决使用 :ref:`cn_api_fluid_optimizer_AdagradOptimizer` 优化器时,在模型训练中后期学习率急剧下降的问题。
H
Hao Wang 已提交
9

10
其参数更新的计算公式如下:
H
Hao Wang 已提交
11 12 13 14

.. math::
    moment\_out = decay*moment+(1-decay)*grad*grad
.. math::
15
    param\_out = param-\frac{learning\_rate*grad}{\sqrt{moment\_out}+\epsilon }
16

17
在原论文中没有 ``epsilon`` 参数。但是,为了保持数值稳定性, 防止除0错误, 此处增加了这个参数。
18

19
相关论文:`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_
20

21
    
22
参数:
23
  - **learning_rate** (float|Variable) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable
24
  - **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
25 26 27 28
  - **decay** (float,可选) – 衰减率,默认值为0.95
  - **regularization** (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 :ref:`cn_api_fluid_regularizer_L2DecayRegularizer` ,默认值为None 
  - **epsilon** (float,可选) - 保持数值稳定性的短浮点类型值,默认值为1e-06
  - **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
29

30 31 32
.. note::
    当前, ``DecayedAdagradOptimizer`` 不支持Sparse Parameter Optimization(稀疏参数优化)
  
33
**代码示例**
34
 
35
.. code-block:: python
36
        
37
    import paddle.fluid as fluid
38 39 40 41 42 43 44 45
    import paddle.fluid.layers as layers
    from paddle.fluid.optimizer import DecayedAdagrad
        
    x = layers.data( name='x', shape=[-1, 10], dtype='float32' )
    trans = layers.fc( x, 100 )
    cost = layers.reduce_mean( trans )
    optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
    optimizer.minimize(cost)
46 47 48

.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)

49
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
50

51 52
参数:
    - **loss** (Variable) – 需要最小化的损失值变量
53
    - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
54
    - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
55
    - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
56
    - **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
57

58
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
59

60 61 62
返回类型: tuple

**代码示例**
63

64
.. code-block:: python
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    import numpy as np
    import paddle.fluid as fluid
     
    inp = fluid.layers.data(
        name="inp", shape=[2, 2], append_batch_size=False)
    out = fluid.layers.fc(inp, size=3)
    out = fluid.layers.reduce_sum(out)
    optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
    optimizer.minimize(out)

    np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    exe = fluid.Executor(fluid.CPUPlace())
    exe.run(fluid.default_startup_program())
    exe.run(
        feed={"inp": np_inp},
        fetch_list=[out.name])
H
Hao Wang 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

.. py:method:: clear_gradients()

**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**


清除需要优化的参数的梯度。

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    with fluid.dygraph.guard():
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")
        optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.02,
                                                            parameter_list=linear.parameters())
        out = linear(a)
        out.backward()
        optimizer.minimize(out)
        optimizer.clear_gradients()


.. py:method:: current_step_lr()

**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**

获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。

返回:当前步骤的学习率。

返回类型:float

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    # example1: LearningRateDecay is not used, return value is all the same
    with fluid.dygraph.guard():
        emb = fluid.dygraph.Embedding([10, 10])
        adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
        lr = adam.current_step_lr()
        print(lr) # 0.001

    # example2: PiecewiseDecay is used, return the step learning rate
    with fluid.dygraph.guard():
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = fluid.dygraph.nn.Linear(10, 10)
        inp = fluid.dygraph.to_variable(inp)
        out = linear(inp)
        loss = fluid.layers.reduce_mean(out)

        bd = [2, 4, 6, 8]
        value = [0.2, 0.4, 0.6, 0.8, 1.0]
        adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                           parameter_list=linear.parameters())

        # first step: learning rate is 0.2
        np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

        # learning rate for different steps
        ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
        for i in range(12):
            adam.minimize(loss)
            lr = adam.current_step_lr()
            np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True